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Preface

If geometric computing is neither computer graphics nor computational geo-
metry, then what is it? Briefly, it is the mathematics and the engineering that
underlie both.

This text

• discusses how to design libraries for Euclidean, spherical, projective,
and oriented projective geometries.

• derives the necessary results in each geometry by appealing to elemen-
tary linear algebra.

• gives a concrete implementation in C++ for classes in each library.

• suggests that the time may have come for practitioners in computer
graphics and in computational geometry to design and implement a se-
quel to LEDA [67] and to CGAL [23] based on the four geometries. The
main aim would be standardization.

• shows examples for the failure of geometric systems when the types
float or double are taken as a substitute for the set R.

• presents the graphics pipeline passing through oriented projective geo-
metry, which makes it possible to talk sensibly about clipping.

• discusses the notion of coordinate-free geometry, a very simple idea that
appears not to have yet entered the mainstream.

• presents the classical raster graphics algorithms that are traditionally in-
troduced in an undergraduate computer graphics course. Doing so can
be done at a rapid pace after a base of geometric computing has been
introduced.

• briefly connects with the established and vibrant discipline of graph
drawing [32].

• discusses elements of the now-classical methods of geometric and solid
modeling [24, 65, 51]. This also is done with considerable brevity after
the appropriate geometric software layers have been introduced.

• shows how geometric algorithms can be designed and implemented such
that combinatorial and geometric parts are separated. The geometry
would act as a plug-in for a combinatorial algorithm to yield a concrete
implementation.

• presents algorithms for Boolean operations on regular sets using binary
space partitioning. An arbitrary geometry satisfying separability can
be plugged into this combinatorial structure to perform computation in
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the corresponding space. Examples are shown for using Euclidean and
spherical geometries as a plug-in with separability as the only require-
ment for the plug-in.

• introduces methods for computing visibility by projecting from Euclid-
ean n-space to spherical n− 1-space, for n = 2, 3.

• seeks to define a common ground from which systems for computer
graphics, visualization, computational geometry, computer-aided design,
robotics, geographic information system, and computer vision can be
designed and implemented.

The text also fills what appears to be a serious gap in the training of un-
dergraduate students in computer science, in mathematics, in physics, and in
mechanical engineering. Many software systems built in these disciplines are
geometric, yet no body of knowledge has been collected that discusses the
issues involved in designing and implementing a geometric system. The ap-
propriate design of an undergraduate curriculum in computer science should
include a course on geometric computing in the second or third year. Such a
course would be a required prerequisite to (traditionally third- or fourth-year)
computer graphics courses and an optional prerequisite to (traditionally late
undergraduate or early graduate) computational geometry courses.

Computer
Graphics

and

Visualization

Computational
Geometry Robotics Computer

Vision

Computer-
Aided
Design

Geographic
Information

Systems

Classical Geometry Computing

Geometric Computing

The notion that metric and topological information are isolated concep-
tually and should remain isolated in a geometric system has long been under-
stood [85]. The genericity of C++ makes this isolation feasible while imposing
neither efficiency nor type safety penalties. New questions emerge. Can one,
for instance, build CSG trees out of spherical geometry or oriented projective
geometry primitives? Knowing the answer as simply an intellectual exercise
would be interesting, but it would be at least as interesting to find that doing so
is possible and that one can do something with the result.

Prerequisites

The background expected is minimal and includes elementary linear algebra,
a course on object orientation and C++, as well as familiarity with basic data
structures and algorithms. That said, Chapters 1 to 4 take a slow ramp intended
as a recapitulation of many of the C++ constructs and of the linear algebra
needed.
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PREFACE vii

Geometric Class Naming Convention

The text includes sample C++ code for most topics discussed. The code can be
downloaded from http://www.springer.com/978-1-84800-114-5. In the discus-
sion of the basic layers for the various geometries, a concrete sketch is given
in C++ of what may arguably be some form of a canonical implementation.
Once the beginning layers are established, C++ is used in lieu of pseudo-code.
One can indeed argue that an objective of good software design is to abolish
the need for pseudo-code. The full implementation contains all the details and
should be consulted if needed, but the text contains sufficient excerpts for it to
be understandable without referring to additional code. In a sense, the elided
C++ code included still acts as a far more precise form of pseudo-code than
one using prose.

The exercises frequently refer to start-up code that will make it easier to
experiment with an implementation without spending an excessive amount of
time on issues unrelated to the topic considered. All start-up code samples
compile and run before adding any extra functionality. By releasing start-up
code, instructors can expect that a student will be capable of writing a nontriv-
ial geometric program in two to three hours. The chapter granularity is chosen
such that each chapter can be discussed in one hour of instruction.

The geometric classes use C++’s genericity and are parameterized by a
number type, although the first chapters discuss direct implementations for
Euclidean geometry to isolate the issues and to introduce them gradually. Each
generic geometric class has a two-letter suffix that identifies the geometry and
the dimension. The following examples illustrate the nomenclature.

• Point E3 is a class for a point in the 3D Euclidean geometry E 3.

• Segment S2 is a class for a segment in the 2D spherical geometry S 2.

• Line P2 is a class for a line in the 2D projective geometry P2.

• Plane T3 is a class for a plane in the 3D oriented projective geometry
T 3.

When instantiating concrete classes, an additional suffix signals the num-
ber type used. If, for example, the generic class Point E2 is instantiated using
the double built-in type, then the concrete class is called Point E2d. This is
done by the following statement.

typedef Point E2<double> Point E2d;

This convention avoids naming clashes and makes it easy to develop a
system involving multiple types, dimensions, and precisions.

Each geometry has its own interpolation operations, intersection functions,
predicates, and methods for computing transformations. The file names in the
accompanying code also follow the naming convention just mentioned. The
files for the Euclidean line, for instance, are shown in the following table.

It will occasionally be clear that an obvious optimization is omitted, but
“premature optimization is the root of all evil” and one should first get a de-
sign right and an implementation correct, then worry about nonasymptotic op-
timizations later. It is not necessary to convince those who have tales to tell




	

��

viii PREFACE

File names for the geometry of the Euclidean line
interpolation e1.h
intersection e1.h
predicates e1.h
transformation e1.h

about a “clever optimization” that actually introduces a performance penalty
of the importance of first aiming for an elegant and clean system design. Code
optimization should be performed only after code profiling has suggested that
it is necessary to do so. In the best of worlds, significant further improvements
should be done on the code before it has been optimized since a serious side
effect of code optimization is that data lose their type; optimization frequently
results in code obfuscation.

Many will consider that the frequent lack of mention of asymptotic com-
plexity is a serious omission. Such discussions are not included to focus on
what lies at the intersection of geometry and computing in addition to time and
space complexity, which are in any case treated extensively elsewhere. Of-
ten complexity is also a contentious issue that separates, and nearly defines,
fields. Avoiding complexity also dodges (perhaps too conveniently) debates
about whether worst-case complexity is overly pessimistic or whether it is
reasonable to assume that information about average time complexity can be
measured by a few empirical charts. It is best to argue, also conveniently, that
geometric computing is defined such that it remains neutral in this discussion.

One violation of C++ programming style, and one for which I ask the for-
giveness of the reader, is the formatting of function arguments and parameters.
I hope that the increased readability afforded by the use of proportional fonts
to typeset the code more than offsets the use of formatting that will seem un-
orthodox to many.

I am grateful to Sylvain Pion, Stefan Schirra, and Michiel Smid for hav-
ing kindly commented on sections of this text. Needless to say, errors or
inaccuracies are my responsibility alone. This text has been designed us-
ing Peter Wilson’s memoir, which may well represent the next generation of
LATEXpackages—the package of compatible packages. Positioning figures in
the margins is inspired by Computational Geometry: Algorithms and Applica-
tions and I am grateful to the authors for sharing their book design. I would
also like to acknowledge the funding of the Natural Sciences and Engineering
Research Council of Canada.

I owe much gratitude to Otfried Cheong for having developed the ipe draw-
ing package, which is used for all hand-drawn illustrations in this text. That
line concurrency and point colinearity in the figures are indeed accurate is en-
tirely due to this superb drawing package. Readers will no doubt wish to write
C++ code to try some of the ideas discussed in the pages that follow, but as
much as this text tries to show just how enjoyable it can be to write a geometric
program, simply redrawing some of the illustrations using ipe will be enlight-
ening. The graphical user interface scene surrounding C++ remains sorely
lacking in standardization. This text relies on Daniel Azuma’s well-crafted
GLOW user interface library. A nice course project would be to use GLOW to
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write an initial ipe3d—for extra credit, the output would remain purely vecto-
rial (by relying on Chapter 32, itself depending on nearly all preceding chap-
ters).

A risk in technical writing is “telling your readers what you’re going to
tell them, telling them, and then telling them what you’ve told them” [119].
This brief introduction is necessary, but since I’ll spare the reader a conclu-
sion, it is worthwhile to conclude by asking several questions that will put the
“introduction” part of the title in perspective.

• As discussed in § 14.4 and § 18.6, the possibility of a library that is more
concise than the one described here, yet one that, crucially, sacrifices
neither type safety nor efficiency is intriguing.

• How can an extension that captures software design for what can be
tentatively called kinetic geometric computing [44] and for computer
animation [77] be designed?

• How can a library for hyperbolic geometry be designed and implemented
such that, for instance, tree and graph drawing algorithms can move
gracefully between Euclidean, elliptic, and hyperbolic spaces?

• How can geometric algebra [33] be brought under the umbrella of the
framework presented here (or the other way around)?

My hope is to have succeeded in not committing one of the cardinal sins of
technical writing, boring you, dear reader. I await your comments and hope
you will get as much enjoyment reading this text as I had writing it.

Sherif Ghali
February 2008
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Euclidean Geometry
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1 Computational Euclidean Geometry in Two Dimensions

Consider that we are about to embark on the design and implementation of a
software system that has a geometric component. We decide to take a long-
term look and to craft a set of geometric classes with enough care so that
there would be a high likelihood that we reuse the classes in the next project
we tackle. This chapter discusses the decisions that need to be made when
designing a set of classes for points, lines, and other objects in planar Euclidean
geometry.

Since the geometry tackled is familiar, there is little need to formalize the
properties of the Euclidean plane and space. Although the details for designing
classes for Euclidean geometry in the plane are quite simple, it is instructive to
go through these details, partly because it will then be easier to appreciate the
need for more complex structures, but also because doing so has the parallel
benefit of acting as a review of C++. It is clear, for example, that we need
classes for a point, a line, and a segment and that Cartesian coordinates will be
used.

1.1 Points and Segments

The first decision we need to make is whether a point in the plane should be
represented using floats, doubles, or long doubles. We look at a good deal of
geometric software written in C++ and find that double is the type most often
chosen—possibly because it offers for many applications the right amount of
balance between precision and compactness. We would thus write

class Point E2d {
private:

double x, y;
public:

Point E2d( double x, double y ) : x(x), y(y) {}
...

};

P (x, y)

x

y

This is good enough for a start, and will in fact be sufficient as the basis
for a great many applications. A detail about the naming convention is needed:
Point E2d will refer to a point in two dimensions using double precision. If
we need to implement another class that uses less precision—say one that con-
sumes four bytes per coordinate—we could also implement a class Point E2f
and thus ensure that the two names would not clash.
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The next decision is whether to provide a default constructor (one taking
no arguments) and, if so, which default point should be chosen.

Since defining a C-array of n objects requires n calls to a default construc-
tor, the compiler would in any case have generated a default constructor, but
our defining one or more constructors halts that default generation, so we need
to supply one.

Should the default constructor initialize the point to the origin? Since built-
in types are in theory not initialized [105], we spare the clients of our class the
risk of reading uninitialized memory, which leads us to the following revised
declaration:

class Point E2d {
private:

double x, y;
public:

Point E2d() : x(0), y(0) {}
Point E2d(double x, double y) : x(x), y(y) {}
...

};

x

y

Point E2d P[5];

P[0]. . . P[4]

Observe that a separate constructor needs to be declared and that it is in-
correct to use two default initializations.

class Point E2d { private:
double x, y;

public:
// incorrect:
Point E2d( double x = 0, double y = 0 ) : x(x), y(y) {}
...

};
Using two initializations would make it legal to create a point with only

one coordinate Point E2d A(1.0);. Such code would initialize the y-coordinate
to 0. This may not appear to be so terribly bad, but it is. The danger lies in the
implicit promotion rules of C++, which would make it possible to initialize an-
other object that can be constructed using a Point E2d parameter with a single
double even when such object initialization makes no sense. Using the first
of the two options above can thus be seen as a way to push a potential logical
error to become a compilation error instead.

To determine whether two point objects are equal, we first attempt to short-
circuit the geometric test and determine whether the same object is being tested
against itself (either directly or via a distinct pointer/reference). If the two
objects are distinct, the two coordinates are compared to report equality.

class Point E2d {
...
bool operator==(const Point E2d& p) const {

return (this == &p) ||
( x == p. x) && ( y == p. y);

}
...

};
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1.1 POINTS AND SEGMENTS 5

To represent a segment in the plane, we need to decide whether our seg-
ments will be directed. Another way of asking this question is the following:
If A and B are two points and we define the two segments [A,B] and [B,A]
and subsequently check their equality, would we want the answer to be true
or false? At this point it will seem that choosing one decision or the other
is arbitrary—not unlike choosing the axioms (Euclidean or otherwise) for a
geometry—and just as with the selection of axioms, many options are possi-
ble, but some turn out later to be more “elegant” or “useful” than others. Let
us assume that our intuition tells us that segments should be directed (which
will turn out in fact to be the wiser of the two decisions).

A

B

A

B

If we refer to the two segment endpoints as source and target, we have

class Segment E2d {
private:

Point E2d source, target;
public:

Segment E2d() : source(), target() {}
Segment E2d( const Point E2d& source, const Point E2d& target )

: source(source), target(target) {}
Segment E2d( const Segment E2d& seg )

: source(seg. source), target(seg. target) {}
...

};

Notice that the list of constructors provided in the code above could be
increased. Would we rather pamper the clients of this API and provide oth-
ers? The next obvious choice would be to add a constructor that takes four
parameters for the x- and y-coordinates of the two endpoints. When making
this decision it is frequently useful to consider whether additional functions are
necessary or, conversely, whether the ones already provided are sufficient. And
so we decide to keep the interface of Segment E2d light by not defining more
constructors, even at the risk of being accused by some programmers using
our API that the list of constructors is incomplete. We return to this question
in Chapter 17.

Input/Output Functions

The clients of any C++ library expect that the input and the output operators
are overloaded for the classes in the library so that it is possible to write code
such as the following:

Point E2d ptA, ptB;
cin >> ptA >> ptB;
...
cout << ”Point A: ” << ptA << ” Point B: ” << ptB << endl;
...

C++ makes it possible to overload the input (“>>”) and the output (“<<”)
binary operators, such that the left operand is an input stream or an output
stream, respectively, and such that the right operand is an object. These op-
erators, which are by necessity nonmember functions, are best overloaded as
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friend functions, giving direct access to member variables. After declaring
friendship

class Point E2d {
...
friend std::istream&
operator>>(std::istream& is, Point E2d& p);
friend std::ostream&
operator<<(std::ostream& os, const Point E2d& p);
...

};

an implementation for the class Point E2d would be as follows:

std::istream& operator>> (std::istream& is, Point E2d& p) {
is >> p. x >> p. y;
return is;

}

std::ostream& operator<< (std::ostream& os, const Point E2d& p) {
os << p. x << ” ” << p. y;
return os;

}

1.2 A Separate Type for Vectors

We next argue that a class is needed for the abstraction of a vector in the plane.
Object-oriented programmers who have seen too many systems that are far too
bloated with unnecessary classes may quickly protest that there is no need to
introduce such an abstraction. A point and a vector are the same. Many pro-
grammers of geometric systems do in fact take that route and keep the number
of classes minimal, but that would be a bad idea. One argument is that an
additional vector type would prevent the programmer using our library from
writing absurd programming snippets such as

Point E2d p1, p2;
...
Point E2d p3 = p1 + p2;

P2

x

y

P1

+?

Unfortunately, the person protesting the loudest that vectors and points
should share the same abstraction is also likely to protest that the above code
is perfectly legitimate and that it should be allowed. The two types are in
fact similar, but we would like to introduce just enough heterogeneity to make
statements such as

Point E2d p1, p2;
Vector E2d v1, v2;
...
Point E2d p3 = p1 + v1;
Vector E2d v3 = v1 + v2;
Vector E2d v4 = p3 − p2;

P3

x

y
P1

−→v1

P2

−→v2

−→v4

−→v3

legal, while making statements such as
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Point E2d p1, p2;
Vector E2d v1, v2;
...
Point E2d p5 = p1 + p2;
illegal. C++ operator overloading can be used to make some statements legal
and keep others illegal. The vector abstraction can best be thought of as a
translation in the plane. A point may be translated, which is why p1 + v1 is
legal; two translations may be combined into a third, which is why v1 + v2
is legal; and the difference between two points returns the vector difference,
which is why p3 − p2 is legal and its return type is Vector E2d. It is crucial
for a geometric library to define a distinct type for a vector, but in case the
preceding argument is unconvincing, we will have a chance to discuss a more
compelling one in § 4.2.

One way to think of classes (or types—the two words are synonymous) is
that they act somewhat like units in physics equations. If we attempt to sub-
stitute the quantities in the equation F = ma (force = mass × acceleration),
we would want to maintain a sanity check by confirming that the unit for ac-
celeration is indeed distance over time squared (and that the units otherwise
match). Type checking acts as the sanity check in an object-oriented system.
The library designer has the benefit of being able to enforce a set of reasonable
constraints. Once such constraints are imposed, the code written by application
programmers will have this check done for free.

Thinking about vectors as modeling translation is not the only option. We
can also think of vectors as modeling a force. Indeed, it would be quite suitable
in a physical system to use a vector object to model both the direction and the
magnitude of a force.

The declaration of a class Vector E2d is quite similar to that of a Point E2d.
We even continue to use the zero vector for the default constructor.

class Vector E2d {
private:

double x, y;
public:

Vector E2d( ) : x(0), y(0) {}
Vector E2d( double x, double y ) : x(x), y(y) {}

...
};

The classes Point E2d and Vector E2d are so similar that one may consider
defining an abstract class Tuple 2d that captures most of the commonality and
then derive the two classes Point E2d and Vector E2d from Tuple 2d.

Programmers trained in schools of programming preceding object orienta-
tion are particularly prone to making this choice. When writing in Pascal or
in the C language, it is enough for a few lines of code to look identical for
the programmer to extract them into a procedure or a function. Carrying this
approach over to object orientation could lead one to extract the common code
into a base class. Such an extraction would be pragmatically sound but would
be flawed, if only philosophically. Object-oriented extraction of commonal-
ity by inheritance from a base class should be used only when there is type
commonality that justifies the inheritance.

Tuple E2d

x,y: double

Point E2d Vector E2d

flawed design
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But leaving philosophical soundness aside, there is another important rea-
son why using inheritance from a common base would be a poor choice. Using
inheritance means incurring a virtual function table, which in turn means that
the compiler may not be able to determine which function will be invoked.
Since points and vectors constitute the lowest layer in a geometric system,
such a minor cost could have significant effect percolating throughout the sys-
tem. We will need to make a related decision, with similar lines of thought, in
§ 3.1.

With these definitions for the classes Point E2d and Vector E2d, we can
now write

Point E2d operator+(const Point E2d& p, const Vector E2d& v)
{

return Point E2d(p.x()+v.x(), p.y()+v.y());
}

Vector E2d operator−(const Point E2d& p1, const Point E2d& p2)
{

return Vector E2d(p1.x()−p2.x(), p1.y()−p2.y());
}

Vector E2d operator+(const Vector E2d& v1, const Vector E2d& v2)
{

return Vector E2d(v1.x() + v2.x(), v1.y() + v2.y());
}

In the same vein, operators for scalar multiplication and division need to
be defined for Vector E2d, but not for Point E2d:

Vector E2d operator∗(double d, const Vector E2d& v)
{

return Vector E2d(d ∗ v.x(), d ∗ v.y());
}

Vector E2d operator/(const Vector E2d& v, double d)
{

return Vector E2d(v.x() / d, v.y() / d);
}

Vectors have historically taken a long time to be accepted, and so readers
who remain unconvinced that the notion of a vector needs to be separate from
that of a point can take comfort that even in 1866, Julius Plücker needed to use
this many words [81] (although the notion he had in mind included moments):

We usually represent a force geometrically by a limited line, i.e.
by means of two points (x′, y′, z′) and (x, y, z), one of which
(x′, y′, z′) is the point acted upon by the force, while the right
line passing through both points indicates its direction, and the
distance between the points its intensity.
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1.3 Vector Normalization and Directions

The vector abstraction defined so far is for a vector of an arbitrary magni-
tude, but a normalized vector—a vector of unit magnitude—is often needed
to indicate, for example, a direction in the plane for the purpose of lighting
(Chapter 21). It would be possible to define a function that normalizes a vector:

void Vector E2d::normalize()
{

double d = std::sqrt( x∗ x + y∗ y );
x /= d; y /= d;

}

Such a function at the outset does not seem like such a bad choice. The
trouble is that if such a function is provided, the client programmer will need
to remember whether each instance of a vector is normalized. Recalling which
objects have already been normalized (of those that should) is a nuisance. More
importantly, if the programmer thinks a vector is normalized when it is not,
there is an error in the code. If the programmer thinks a vector is not normal-
ized when it is, run-time performance will be lost.

Implementing a class Direction E2d that stores a vector of unit magnitude
avoids this problem altogether. We are content for now to assume that nor-
malization is performed at construction, but we will see starting in § 8.1 that
it may be preferable in many applications to perform the normalization on de-
mand. The designer will have to decide whether the storage penalty needed
to cache the normalized vector in addition to saving the unnormalized vector
can be afforded. If it is known that each direction will be used for shading
computation (Chapter 21) and if no predicates (Chapter 2) will depend on the
direction, normalizing at construction will indeed be the approach needed. In
this, geometric computing deviates from the classical treatment. Classical geo-
metry texts always assume that normalization is innocuous and use direction
cosines (our “direction”) as a normalized object. Indeed, it would be awkward
to keep the term “cosines” without normalization being implicit.

class Direction E2d {
private:

double x, y;
public:

Direction E2d(const Vector E2d& v)
{

double d = std::sqrt( v.x()∗v.x() + v.y()∗v.y() );
x = v.x() / d;
y = v.y() / d;

}
...

};

−→v1−→v2
−→
d1

−→
d2

We will be content at this stage to assume that the square root function,
std::sqrt, is indeed going to be invoked, although, as we will see in Chapter 7,
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number types other than double may frequently need to be used. If the square
root function is not available for the number type, then an alternative test is
needed. This approach is described in § 8.1 for points in spherical geometry.

The two spaces captured by the classes Vector E2d and Direction E2d are
distinct. It would be quite all right to talk about a zero vector, or a null vector—
one in which both the x and y elements are zero. If we are using vectors to
capture forces or translations in the plane, it still makes sense to talk about
applying a zero force or of applying a zero translation on a point. A direction,
on the other hand, cannot be null. The set of representable directions can be
captured by the unit circle. The vector used to construct a direction can be
of arbitrarily small magnitude; normalizing it will still result in a vector of
unit magnitude, but its magnitude cannot vanish. Perhaps most crucially if one
wishes to be only pragmatic, the same transformation is applied differently
on vectors and on directions: Vectors transform as a point, whereas directions
transform as a (hyper-) plane—a line in E 2. We continue this discussion in
§ 4.1 and § 12.6.

1.4 Affine Combinations

Consider animating a particle R moving from a point P to a point Q and using
a scalar α to generate the motion. R is at P when α = 0 and atQ when α = 1.
The expression

R = (1− α)P + αQ

would determine R as a function of α, but it also evaluates the product of a
scalar and a point, an operation earlier deemed illegal. To satisfy our type
system, the expression could be recast as a function of the origin O into the
more baroque

R = O + (1− α)(P −O) + α(Q−O).

Since in this expression the differences between two points (P −O) and (Q−

P

Q

R

O
O) are vectors, they can be scaled and then added to the origin O to construct
the point R. It would be unreasonable if constraints from our self-imposed
type system would result in a penalty in efficiency (compare the number of
floating point operations needed). To avoid the efficiency hit, we declare the
first, more direct, expression for the affine combination of two points to be
legal so long as the scaling factors sum to unity [40]. Even though ultimately
either operation must resolve to computations on individual coordinates, there
is another important yet subtle difference between the two expressions: As will
be discussed in Chapter 17, the second expression has the advantage that it can
be implemented while abiding by coordinate freedom, while the first must have
access to individual coordinates.

The example serves to illustrate the kind of mundane decisions that need
to be made, but ones that influence the overall feel of a geometric library. In
this case it is purely illustrative since a third expression

P

Q

R

O

R = P + (Q− P )α
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has the simultaneous advantages ofbeing coordinate free and using only two
multiplications for points in the plane implemented using Cartesian coordi-
nates.

1.5 Lines

The next fundamental class to look at is that of a line in the plane. Since we
decided that a segment in the plane is directed, it makes sense that a line in the
plane should also be directed.

Taking our cue from classical analytic geometry, it is tempting to use ax+
by+ c = 0 as the fundamental equation for a line in the plane. (Let’s leave the
orientation out for a second.) We ponder whether to adopt this representation
for a line by considering an obvious optimization. −c/a

−c/b

If we are eager to minimize the storage for a line object, we may consider
normalizing the equation above toAx+By+1 = 0 (whereA = a/c andB =
b/c). This normalization is rather troublesome: What if c = 0? According to
the IEEE 754 standard [54], we can indeed represent±∞ in a double (more in
§ 7.5), but we would rather avoid relying on such a representation and conclude
that normalizing is not an option.

But what is the set of lines that we would be unable to represent if we ex-
cluded c = 0? These are of course the lines passing by the origin—a rather
important subset that we cannot do without. What about other special cases
such as a = 0 or b = 0? At first sight these cases (lines parallel to the x- and
the y-axes, respectively) are representable with no trouble. We would, how-
ever, run into trouble later on: If we work through what would need to be
computed to determine, say, the intersection of two lines in the plane, we will
find that our code will be unnecessarily complicated since these special cases
will need to be explicitly handled (which is inelegant, error-prone, and time-
consuming—both for us and for systems built using our library).

The reader who has gone through a comparison between classical analytic
geometry and analytic geometry through vector computation will be quite fa-
miliar with the preceding discussion. These preceding arguments can all be
seen when a (classical) analytic geometer decides to adopt vector calculus. We
may then rush to conclude that the canonical representation we are seeking is
none other than representing a line by a point in addition to its direction, or
angle with a fixed axis. Using a point and a direction as the member data for
a line in the plane may indeed be sensible, but how will a line in the plane
be typically constructed?, one may ask. Since a line object is usually con-
structed from two distinct points, we will simply store these two points as the
member variables for a line. Let’s confirm that this decision will satisfy all the
constraints we have looked at:

• A line remains directed.

• The intersection of two lines is easily computed and the intersection code
will contain no special cases.

• Determining whether two lines are equal can be performed reliably with-
out incurring the reduced exactness or the reduced efficiency of trigono-
metric functions.
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We observe that storing the two endpoints requires four floating point num-
bers, whereas we saw that we could get by with just half that much. Ignoring
for a while the difference, we are content to write

class Line E2d {
private:

Point E2d source, target;
public:

Line E2d() : source(), target() {}
Line E2d( const Point E2d& source, const Point E2d target )

: source( source), target( target) {}
Line E2d( const Line E2d& line )

: source(line.source), target(line.target) {}
Line E2d( const Segment E2d& seg )

: source(seg.source()), target(seg.target()) {}...
};

Our line class ended up looking so similar to our segment class that it is
tempting to consider whether the two abstractions actually need to be sepa-
rated, but the answer is clear when we think about the intersection of a pair of
lines or of segments—the result of the intersection may depend on whether a
line or a segment is involved.

Line Construction

Representing a line using two points is a good first design, but there are two
reasons why we should not be content with such a choice. One reason is that
the line may be constructed using other than two points. The line may be
defined as passing by a point while parallel or perpendicular to another line,
for instance. It would be inelegant to construct an artificial second point in this
case to accommodate the class definition. Another reason is that one line may
be used multiple times in intersection computations. Since each would require
finding the coefficients of the line equation, it would be advantageous to cache
the coefficients or to have them simply replace the pair of points, thus avoiding
finding a second point if none is given during construction.

Storing the coefficients of the parametric form of the line ax+ by + c = 0
is superior to the single-valued form y = mx + b since lines parallel to the
y-axis would be captured easily by setting a = 0.

The ax + by + c = 0 could be normalized to Ax + By + 1 = 0, but, as
discussed, doing so would make it impossible to capture lines passing by the
origin, and so we choose the following representation for a line:

class Line E2d {
private:

// The source and target of the line are not stored
double a, b, c;

public:
Line E2d(const Point E2d& source, const Point E2d& target);
...

};
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To find the coefficients given two points defining the line, we solve for A
and B in Ax + By + 1 = 0. If S and T are the two points, we solve the two
equations

ASx +BSy + 1 = 0,
ATx +BTy + 1 = 0

as

A = +

Sy 1
Ty 1
Sx Sy
Tx Ty

, B = −

Sx 1
Tx 1
Sx Sy
Tx Ty

.

We then avoid the division by storing instead the coefficients of ax+ by+
c = 0, where

a = +
Sy 1
Ty 1 , b = − Sx 1

Tx 1 , c =
Sx Sy
Tx Ty

, S 6= T.

We would define a line by saying that the two points used for its construc-
tion are distinct. The word distinct appears as a constraint to the solution:
The determinant of the matrix defining c above vanishes exactly when the two
points S and T coincide. It may be wise to guard against that case by using an
assert statement or by throwing an exception (§ 12.2), while ensuring that no
run-time penalty is paid by, for example, turning assertions off for production
code.

Line Default Constructor

The default constructors used for points (the origin), for vectors (the zero vec-
tor), and for segments (two coincident points at the origin) declared somewhat
sensible objects. When choosing a default constructor for a line we have a
chance to define a line that makes no sense. If the three coefficients are set to
zero, the equation 0x + 0y + 0 = 0 no longer defines a line. One option is to
choose some line as the default one (perhaps coinciding with the x-axis). The
alternative, not defining a default line, puts application programmers at the risk
of reading uninitialized variables.

1.6 Vector Orthogonality and Linear Dependence

We are frequently interested in determining whether two vectors are perpen-
dicular, or orthogonal, and whether one is a multiple of the other—whether
they are linearly dependent. See Figure 1.1.
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Figure 1.1
Angle between two vectors

Unit Vectors

The length, or magnitude, of a vector can be determined by Pythagoras’ theo-
rem. The magnitude of a vector −→v is |−→v | =

√
v2
x + v2

y . A vector is said to be
of unit length, to be of unit magnitude, or is simply referred to as a unit vector
if |−→v | = 1, which in turn means that v2

x + v2
y = 1.

Orthogonality

If two vectors −→v1 and −→v2 are orthogonal, then their magnitude must be related
to that of the hypotenuse −→v2 −−→v1 by Pythagoras’ theorem. The hypotenuse is
also related to the two vectors since, evidently, −→v1 + (−→v2 − −→v1 ) = −→v2 . The
magnitude of each of the three vectors can itself be found also by Pythagoras’
theorem. We can write

−→v1

−→v2

−→v2 −−→v1

(
√
x2

1 + y2
1)2 + (

√
x2

2 + y2
2)2 = (

√
(x2 − x1)2 + (y2 − y1)2)2,

(x2
1 + y2

1) + (x2
2 + y2

2) = ((x2 − x1)2 + (y2 − y1)2),

(x2
1 + y2

1) + (x2
2 + y2

2) = (x2
2 − 2x2x1 + x1) + (y2

2 − 2y2y1 + y2
1),

0 = x1x2 + y1y2.

The last expression is of course the inner product, also called the dot prod-
uct because it is frequently written as −→v1 · −→v2 . The dot notation is convenient
because it makes it possible to write the product as one directly between two
column vectors. Writing it as one between two matrices, one would write
−→v1 T−→v2 . Notice that it would be incorrect to write simply −→v1 −→v2 . Because we
look at vectors as matrices of order 2 × 1, the inner product is obtained from
the product of the transpose of the first with the second.

Recall that the dot product is a scalar-valued function that measures the
magnitude of the projection of one vector on the other. If the angle between
two vectors −→v1 and −→v2 is θ, then

−→v1 · −→v2 = |−→v1 ||−→v2 | cos θ.

Linear Independence

We say that two vectors are linearly independent if there does not exist a scalar
k such that −→v1 = k−→v2 . If such a k exists, the vectors are termed linearly
dependent.

Since [
x1

y1

]
= k

[
x2

y2

]
=⇒ x1

x2
=
y1
y2
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we can conclude the following familiar condition for vector orthogonality:

x1y2 = x2y1 =⇒ x1y2 − x2y1 = 0.

If we construct a 2 × 2 matrix using the two column vectors −→v1 and −→v2 ,
the last expression is, of course, the determinant of the matrix.

Basis

Any pair of linearly independent (and nonzero) vectors is suitable for use as a
basis. One point in the plane is declared the origin, its coordinates are set at
O(0, 0), and the two vectors are used as a frame of reference. The coordinates
of the point O +−→v1 will be defined as (1, 0) and those of the point O +−→v2 as
(0, 1). This frame of reference makes it possible to uniquely determine a pair
of coordinates for all points in the plane. It is clear though that not all bases
are equally useful. The closer the determinant of the matrix M = [−→v1 −→v2 ] is to
zero, the less suitable the pair of vectors is for use as a frame of reference.

(0, 0)
(1, 0)

(2, 0)
(0, 1)

(1, 1)
(2, 1)

If the pair of vectors we use has the properties:

1. each vector is of unit length and

2. the two vectors are orthogonal,

we say that they form an orthonormal basis. It is easy to confirm that if only
the first condition is satisfied, the determinant is in the range [−1 . . . 1] and that
if both are satisfied—see Figure 1.2—the determinant is either 1 or −1. If the
determinant is 1, we say that the matrix is proper orthogonal and if it is −1,
the two vectors are still orthogonal, but we refer to the matrix as an improper
orthogonal matrix (§ 4.6).

−→v1

−→v2

−→v1−→v2

−→v1

−→v2

−→v1−→v2 −→v1

−→v2
−→v1

−→v2

−→v1

−→v2

−→v1

−→v2

|M | = 1 |M | = 1|M | = 1|M | = 1|M | = 1|M | = −1|M | = −1|M | = −1

Figure 1.2
Orthonormal basis vectors
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2 Geometric Predicates

Now-ancient books on computing frequently use flow charts, which conve-
niently introduce predicates. At the time when FORTRAN in particular, and
imperative programming in general, were at the forefront of computing, the
use of flow charts was widespread (see, for example, those for polygon clip-
ping [107]). A flow chart illustrates rather pointedly the path that control may
take during computation. This path is sketched using straight lines that connect
rectangles and diamonds. Assignment statements appear inside rectangles and
if-statements appear inside diamonds. Other elements also exist, but we con-
centrate here on the parts where the linear path of program control is broken,
or branches. The functions that are evaluated and that decide the path taken at
such branches are called predicates. Flow charts have since been replaced by
pseudo-code, where changing the linear program control appears in the form
of an indentation.

System design has gone back to schematics with the advance of techniques
for object-oriented design. One such popular visual language and accompany-
ing methodology, the Unified Modeling Language, promotes that system de-
sign should be tackled at a higher granularity. Objects and the messages they
pass to each other are identified, but the advance of UML did not supplant—it
merely enlarged—pseudo-code and the algorithm design that it captures.

The objective of this chapter is to argue that crafting good geometric pred-
icates and using them properly is at the center of geometric computing.

2.1 Predicate Return Type

We generally think of predicates as functions with a Boolean return type.
The Boolean type might identify whether a counter has reached some bound,
whether a predetermined tolerance has been satisfied, or whether the end of a
list has been reached. Such predicates arise in geometric computing, but an
additional type of test is frequently needed. Because this geometric test has
three possible outcomes, we refer to it as a ternary branching test. Yet most
often, we are interested in forming a binary predicate from the three possible
outcomes.

−ve

+ve +ve

−ve

0 0

The need for three branches in a test can be seen when we consider an
oriented line splitting the plane. The plane is split into the points that lie on
the positive halfplane, the points that lie on the negative halfplane, as well as
those that lie on the line itself. A geometric library will offer such ternary out-
comes to clients, and the application programmer will decide how the predicate
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should be formed. An application might quite suitably need to capture only two
cases, the set of points lying on the positive halfplane or the line and the set
of points lying in the negative halfplane, for example. But the geometric tests
should be offered in such a way that if the application programmer wishes to
provide different handling for each of the three cases, it is possible to do so.

left halfsp
ace

right halfsp
ace

+
−

Just as we refer to an interval being open if it does not include its extrem-
ities and refer to it as closed if it does, we can also talk about either open or
closed halfspaces. A left open halfspace consists of the points lying to the left
of the line, not including the points on the line itself. A left closed halfspace
does include the points on the line. Whether open or closed, we define the
boundary of the halfspace as the points on the line. Thus, a closed halfspace
includes its boundary and an open halfspace does not. The interior of an in-
terval is the corresponding open interval. A set is termed regular if it is equal
to the closure of its interior—an interval is regular if it is closed. By thinking
of the predicate as a ternary rather than as a binary predicate we simplify the
design of a predicate and leave the decision of choosing among the different
representable sets to the client.

But before discussing the turn predicate, it is worthwhile to discuss an even
simpler predicate, testing whether two points in the plane coincide. Saying that
the two points coincide is less ambiguous than saying that the two points are
equal, since the latter may be interpreted to mean that the object represent-
ing the points is identical. Implementing a two-point coincidence predicate
is simple enough: It suffices to test whether the x-coordinates are equal and
the y-coordinates are equal. The computation needed for a three-point and a
four-point predicate are described next. These 2-, 3-, and 4-point predicates to-
gether capture the vast majority of the geometric tests that arise in a geometric
system in the plane.

2.2 The Turn Predicate

Determining the orientation of a point with respect to the line defined by two
other points is easily defined by appealing to a function that will take us mo-
mentarily to a third dimension.

The Cross Product

There is more than one way to define the cross product of two vectors −→v1 and
−→v2 . In this text we take the classical—in computer graphics—view that the
cross product −→v = −→v1 × −→v2 is a vector that is simultaneously orthogonal to
−→v1 and −→v2 , that obeys the right-hand rule with respect to the two vectors, and
whose magnitude is related to that of the two vectors by

|−→v | = |−→v1 ||−→v2 | sin θ,

where θ is the angle between the two vectors. Defining and using the cross
product is in general awkward [33]. Its awkwardness in our context is that
we would have liked to be able to consider geometric structures as standalone
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objects worthy of study even if they are not embedded in a higher dimension
(which, at least linguistically, affects the choice of prepositions—see § 11.1).

Defining the cross product as a vector lying in a third dimension breaks
that uniformity, but we can live with that breach. To develop an intuition about
cross products one needs only to consider how it varies when one of the two
vectors, say −→v2 , moves. Consider positioning −→v1 such that it coincides with
the positive x-axis. If −→v2 also coincides with the x-axis, the cross product will
be the zero vector. This is natural: The two vectors do not define a plane or,
alternatively, the parallelogram they define has zero area.

Now consider that−→v2 rotates toward the y-axis. The magnitude of−→v1 ×−→v2
increases until it reaches a maximum when −→v1 and −→v2 are orthogonal. As −→v2
rotates beyond the y-axis, the magnitude of −→v retracts. It reaches zero when −→v = −→v1 ×−→v2

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

−→v
−→v1

−→v2

−→v
−→v1

−→v2

−→v

−→v1

−→v2
−→v

−→v1

−→v2−→v
−→v1

−→v2

−→v

−→v1
−→v2

−→v2 = −−→v1 . Once −→v2 goes past the −x-axis, the direction of −→v is aligned with
the −z-axis.

Design of the Turn Predicate

One could argue that a predicate that reports whether three points are colinear
would be needed. But rather than implement such a predicate by itself, it is
more convenient to implement a more general one that will also determine
colinearity. Such a turn predicate might have the signature

Oriented side oriented side(
const Point E2d& p1,
const Point E2d& p2,
const Point E2d& p3);

where the return type is defined as

P1 P1

P2 P2

P3
P3

left turn colinear right turn
P1

P2

P3

enum Oriented side {
ON NEGATIVE SIDE = −1,
ON ORIENTED BOUNDARY,
ON POSITIVE SIDE

};

These names are those defined by CGAL [23]. Whenever possible when
choosing names for Euclidean objects we choose ones that match the termi-
nology established by CGAL, which simplifies the task of moving from one
geometry module to another.

If necessary, the implementation of various convenience predicates is now
easy. The following binary predicates delegate the requests they receive to the
oriented side function:

bool is left turn(
const Point E2d& p1,
const Point E2d& p2,
const Point E2d& p3) {

return oriented side(p1, p2, p3) == ON POSITIVE SIDE;
}
bool are colinear(

const Point E2d& p1,
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const Point E2d& p2,
const Point E2d& p3) {

return oriented side(p1, p2, p3) == ON ORIENTED BOUNDARY;
}
bool is right turn(

const Point E2d& p1,
const Point E2d& p2,
const Point E2d& p3) {

return oriented side(p1, p2, p3) == ON NEGATIVE SIDE;
}

Matrix Form of the Turn Predicate

As the oriented line
−−−→
P2P3 divides the plane into the points lying on, to the left,

or to the right of the line, the sign of the expression

−−−→
P1P2 ×

−−−→
P2P3

identifies the location of the point P3. If the sign is positive, P3 is to the left;
if it is zero, P3 is on the line; and if it is negative, P3 is to the right of the line.
The vector product above evaluates to the determinant

x2 − x1 x3 − x2

y2 − y1 y3 − y2
,

which can in turn be expanded into the 3× 3 determinant

x1 x2 − x1 x3 − x2

y1 y2 − y1 y3 − y2
1 0 0

,

where the two values x1 and y1 could be chosen arbitrarily. Adding the first
column to the second and the resulting second to the third, we obtain the equiv-
alent homogeneous form

x1 x2 x3

y1 y2 y3
1 1 1

.

We will encounter the homogeneous forms in Part II, but we can stop
briefly at this time and interpret this expression as three vectors in 3D rather
than as three points in 2D.

x

y

z
−→v3

−→v1

−→v2

The particular test we will use will depend on whether we are testing
for the inclusion of the query point in an open or a closed halfplane. If we
wish to determine, for instance, whether a point lies in the open left half-
plane, we simply test oriented side(...) == ON POSITIVE SIDE. If we wish
to determine whether a point lies in the closed left halfplane, we test instead
oriented side(...) != ON NEGATIVE SIDE.
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2.3 Side of Circle Predicate

Design of the Side of Circle Predicate

Just as two points naturally define a line that splits the plane into two regions
in addition to the line separating them, three points in the plane P1, P2, and
P3 define a circle that splits the plane into two regions in addition to the circle
itself. The following inside circle predicate and accompanying constants can
therefore be defined:

Orientation to circle
inside circle(

const Point E2d& p0,
const Point E2d& p1,
const Point E2d& p2,
const Point E2d& p3);

enum Orientation to circle
{ OUTSIDE CIRCLE = −1, COCIRCULAR, INSIDE CIRCLE };

p1
p2

p3

q

inside
circle

on
circle

boundary

outside
circle

p1
p2

p3

q
p1

p2

p3

q

Matrix Form of the Side of Circle Predicate

A circle with center (xc, yc) and radius r in the plane has the equation

(x− xc)2 + (y − yc)2 = r2,

which expands to

(x2 + y2)− 2(xxc + yyc) + (x2
c + y2

c − r2) = 0.

More generally,

A(x2 + y2) +Bx+ Cy +D = 0

is the equation of a circle in the plane provided that A 6= 0.
The equation above can be written as the determinant

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

= 0, (2.1)

where

A =
x1 y1 1
x2 y2 1
x3 y3 1

, B =
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y2
3 y3 1

,

C =
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y2
3 x3 1

, D =
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2
x2

3 + y2
3 x3 y3

.
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It is clear that the determinant in Eq. (2.1) vanishes if the point P (x, y)
coincides with any of the three points P1(x1, y1), P2(x2, y2), or P3(x3, y3).
Moreover, we know from § 2.2 that A 6= 0 if and only if the three given points
are not colinear.

It is also clear that all the points lying either inside or outside the circle gen-
erate a positive determinant and that the points lying on the other side generate
a negative determinant. Since exchanging any two rows in Eq. (2.1) would flip
the sign of the determinant, the order of the three given points does matter.
Clients of this predicate would likely rather not be careful in selecting a par-
ticular order for the three points and so it would be appropriate to take a small
efficiency hit and compute the 3×3 determinant for the orientation of the three
points in addition to computing the 4 × 4 determinant in Eq. (2.1). And so a
point P (x, y) can be classified with respect to a circle defined by three points
by evaluating the following equation:

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

×
x1 y1 1
x2 y2 1
x3 y3 1

= side of circle(P ,P1,P2,P3)


< 0 inside,
= 0 on the circle boundary,
> 0 outside.

2.4 Order Predicate

Consider the following problem in the plane. Given an oriented line L and a
set S of lines, we wish to sort the intersections of S with L along the orientation
of L.

Our sorting implementation will need an order predicate. Given a line L
defined by two points, the predicate will report either that one of the two points
is encountered first along the line, or that the two points coincide.

L

If the line has the orientation illustrated in the adjacent figure, then com-
paring the x-coordinate of the two points will produce the result needed. If
the slope of the line with the x-axis is large while the x values still increase
along the line, it would be more reliable to use the y-axis instead. For a general
line in the plane, we divide the plane into four quadrants. When the quadrant
in which a vector along the line is determined, we will know the line’s domi-
nant direction. We thus introduce a new data type Dominant E2 that stores this
direction.

X+

Y+

Y−

X−

enum Dominant E2 {
E2 POSX, E2 NEGX, E2 POSY, E2 NEGY

};

The following function will determine the dominant direction of L:

Dominant E2 dominant(const Segment E2d& segment)
{
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double dx = segment.target().x() − segment.source().x();
double dy = segment.target().y() − segment.source().y();

double dxabs = dx >= 0 ? dx : (−dx);
double dyabs = dy >= 0 ? dy : (−dy);

if(dxabs >= dyabs)
return ((dx > 0.0) ? E2 POSX : E2 NEGX);

else
return ((dy > 0.0) ? E2 POSY : E2 NEGY);

}

We return to this function in § 17.4 and move now to the implementation
of a function that reports the order of two points P1 and P2 along a line L in
the plane.

enum Comparison {LessThan, Equal, GreaterThan};

Comparison
find order(const Point E2d& p1, const Point E2d& p2, const Dominant& D)
{

switch(D) {
case POSX:

return ( p1.x() < p2.x()
? LessThan : (p1.x() == p2.x()
? Equal : GreaterThan); break;

case NEGX:
return ( p1.x() > p2.x()

? LessThan : (p1.x() == p2.x()
? Equal : GreaterThan); break;

case POSY:
return ( p1.y() < p2.y()

? LessThan : (p1.y() == p2.y()
? Equal : GreaterThan); break;

case NEGY:
return ( p1.y() > p2.y()

? LessThan : (p1.y() == p2.y()
? Equal : GreaterThan);

}
}

2.5 The Geometry of the Euclidean Line E 1

Simple as they are, objects and predicates for the geometry of the Euclidean
line E 1 are frequently needed. A point object is merely a wrapper for a (real)
number. But before contemplating the geometry of E 1 it is instructive to con-
sider a question that will appear to border on pedantry. Should we say that a
point is in E 1 or on E 1? The difference is not just a matter of language. If we
refer to a point that lies on E 1, we have in mind a Euclidean line E 1 that is
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itself embedded, or lying, somewhere in a higher-dimensional space, as a line
in E 2 or in E 3. But E 1 is a perfectly fine structure by itself; there is no need
for it to lie inside another. If we say that a point is in E 1, we have in mind
a setting in which some small creature (the point) is only endowed with the
ability of “looking” in one of two directions, and of moving and distinguishing
distances in only these two directions. The issue of prepositions is revisited in
the context of projective geometry in § 11.1.

One useful operation for points in the Euclidean line is the ≤ operation.
It satisfies some elementary properties on the set of points. In particular, the
relationship is transitive; given three points A, B, and C,

A ≤ B ∧B ≤ C =⇒ A ≤ C.

Two points P1 and P2 can be passed to a function oriented side that returns
ON POSITIVE SIDE if P2 − P1 > 0, ON NEGATIVE SIDE if P2 − P1 < 0,
and ON ORIENTED BOUNDARY if P2 − P1 = 0.

P1P2 P3

P+
1P−1

Likewise a segment in E 1 is a wrapper for two real numbers. We define a
segment using an ordered tuple of a source and a target with the constraint that
source < target.

A point P1 splits the Euclidean line into two parts. A point P2 lies on the
positive side of P1 if P1−P2 > 0. Many applications benefit from abstracting
the Euclidean line. We will get a chance in § 28.2 to discuss some operations
that can be implemented based on the abstraction of Point E1 and Segment E1
for objects in the Euclidean line.

2.6 Immutability of Geometric Objects

We conclude the chapter by arguing whether geometric objects should be im-
mutable. An object is immutable if it is not possible to change its state—or
in the case of geometric objects, its coordinates—after construction. Consider
the following code:

Point E2d P1 = Point E2d(5,7);
Point E2d P2 = P1;
Point E2d & P3 = P1;

Were we to implement a member function Point E2d::set x(...), it would be
possible to modify the coordinate of P1 after the execution of the code above.
Afterwards, a programming bug will continue to lurk, waiting to arise [67,
LEDA Rule 4]. The trouble is that the client programmer must subsequently
make the conscious effort to recall that P2 is merely a copy of P1 and is un-
affected by modifications to P1, whereas P3 is a reference and would mirror
changes to P1’s data members. The safest way to avoid this error is to de-
clare geometric objects immutable and to provide no set functions. Client
programmers who need a new geometric object need to create a distinct object
for it. Disallowing the modification of a single coordinate can also be seen as
an instance of a larger set of suggestions for a geometric library, coordinate
freedom, the topic of Chapter 17.
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2.7 Exercises

2.1 Write a program that creates suitably named encapsulated postscript files
(with an extension of “eps”) showing drawings of the following polar or
parametric equations of a curve. First read § 4.5 as well as Appendix A.

1. Cardioid: r = 2 ∗ (1 + cos(θ)).

2. Lissajous: x = sin(aθ + c), y = sin(bθ) for constant reals a, b,
and c.

3. Trochoid: x = aθ − h sin(θ), y = a − h cos(θ) for constant reals
a and h.

2.2 The four Boolean variables s2s, s2t, s1s, and s1t determine the turn from
one segment to the endpoints of another. Write an expression on the four
variables that evaluates to true if and only if the two segments intersect
in their interior.

2.3 Write an expression that evaluates to true when the segments intersect in
any configuration.

2.4 Suppose we wish to partition a set of points into those lying to the right,
on, and to the left of the line formed by a pair of points in the plane. The
most natural approach is to start by constructing an instance of Line E2d
and then to iterate over the points. It now helps to know whether the
line is stored internally as ax + by + c = 0 or as simply the given pair
of points. Suggest an efficient solution for this problem and count the
number of floating point multiplications that your answer would incur to
partition a set of n points.

2.5 Consider the following design option for the function calculating the
intersection between two segments. The function returns an array—
perhaps implemented as std::vector<Point E2d>—and the size of the
vector would be zero, one, or two depending on whether the result of the
intersection is no object, a point, or a segment. Evaluate this approach
in two scenarios of your choice.
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3 Computational Euclidean Geometry in Three Dimensions

This chapter discusses the design of classes for geometric objects in three
dimensions and the predicates and intersection functions that arise in space.
Since many of the ideas encountered while designing classes for 2D in
Chapter 1 are similar to those in 3D, the pace is somewhat faster.

3.1 Points in Euclidean Space

When asked to implement a class for a point in three dimensions after imple-
menting a class such as Point E2d, it is tempting to write

// poor design
class Point E3d {

Point E2d pnt;
double z;
...

};

Point E2d

x,y: double

Point E3d

z: double

or perhaps to modify the access specifier for the x- and y-coordinates in Point E2d
to be protected and write

// poor design
class Point E3d : public Point E2d {

double z;
...

};

Point E2d

#x,y: double

Point E3d

z: doubleBoth designs are flawed. The first consists of adopting an aggregation re-
lationship from Point E3d to Point E2d. Saying that an instance of a Point E3d
is an aggregate of a Point E2d in addition to some third dimension is hard to
justify geometrically. Likewise, connecting Point E3d to Point E2d through
inheritance is also hard to justify.

The proper approach is then to keep the two classes separate and write the
following:

class Point E3d {
private:

double x, y, z;
public:

Point E3d( double x, double y, double z ) : x(x), y(y), z(z) {}
...

};
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3.2 Vectors and Directions

As for Vector E2d, an implementation for a vector in three dimensions would
start as follows:

class Vector E3d {
private:

double x, y, z;
public:

...
};

An implementation for a class Direction E3d would capture the notion of
a normalized vector, or one of unit magnitude. The three components may be
divided by the length of the vector during construction:

class Direction E3d {
private:

Vector E3d v;
public:

Direction E3d(double x, double y, double z) {
double L = x∗x + y∗y + z∗z;
v = Vector E3d(x/L, y/L, z/L);

}
};

But as we will see shortly, it is not necessary to perform the normalization
step. An operation such as testing for the equality of two directions can be
reduced to a variation of testing for linear dependence.

3.3 Vector Orthogonality and Linear Dependence

Vector Magnitude

The magnitude of a vector −→v (x, y, z) in three dimensions can be determined
by applying Pythagoras’s theorem twice. The projection of −→v on the xy-plane
is

√
x2 + y2 and the magnitude is√(√

x2 + y2
)2

+ z2 =
√
x2 + y2 + z2.

If
√
x2 + y2 + z2 = 1, then |−→v | = 1 and −→v is termed a unit vector.

x
y

z

p
x2 + y2

p
x2 + y2 + z2

Orthogonality

As in § 1.6, the condition for two vectors −→v1 and −→v2 in three dimensions to be
orthogonal can be derived by relating their magnitude to that of their differ-
ence. As

|−→v1 |2 + |−→v2 |2 = |−→v2 −−→v1 |2,
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we expand the left side to(√
x2

1 + y2
1 + z2

1

)2

+
(√

x2
2 + y2

2 + z2
2

)2

and the right side to(√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

)2

,

which yields
x1x2 + y1y2 + z1z2 = 0.

Since this expression is that for computing the inner product, we conclude that
−→v1 · −→v2 = 0 if and only if the two vectors are orthogonal.

Linear Independence

Two vectors −→v1 and −→v2 in three dimensions are linearly dependent if there
exists a k such that −→v1 = k−→v2 =⇒ x1 = kx2, y1 = ky2, and z1 = kz2,
which yields

x1

x2
=
y1
y2

=
z1
z2

and

x1y2 = x2y1, y1z2 = y2z1. (3.1)

Two vectors are linearly dependent if ∃k ∈ R, k > 0,−→v1 = k−→v2 . Eqs. 3.1
tell us that two vectors are linearly dependent, but do not identify whether
k > 0 can be satisfied.

To determine whether k > 0 can be satisfied, we can proceed in one of two
methods:

1. We confirm that the dot product of the two vectors is positive.

2. We determine whether the coordinates with the largest absolute magni-
tude have the same sign. Determining which of x, y, or z is largest in
absolute terms is needed often enough. We call it the “dominant” direc-
tion in § 2.4 and § 3.7.

Orthonormal Basis

Any three linearly independent unit vectors are suitable as a basis in three
dimensions. If the three vectors are mutually orthogonal, they form an ortho-
normal basis.

3.4 Planes in Space

As with lines in 2D, we consider oriented planes in 3D. This amounts to mak-
ing a distinction between the two sides of space split by a plane. One side is
termed the positive halfspace and the other the negative halfspace. A plane
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can be constructed using three noncolinear points lying on it. The order of the
three points matters. If any two of them are swapped, a plane coincident with
the first, but of opposite orientation, is defined.

The vector normal to the plane is
−→
N = (P2−P1)×(P3−P2) (see § 2.2).

Since any vector lying in the plane is orthogonal to the normal
−→
N , a point P

on the plane must satisfy (P − P1) ·
−→
N = 0 (where P2 or P3 could equally

well be used). The general form of this equation, in which a plane is used to
partition space, is discussed in § 3.6.

Whenever possible, we prefer to use vectorial computation over ones using
scalar quantities (more in Chapter 17), but it is easy in this case to avoid paying
the time and space penalty by extracting the constant in the plane equation. The
normal

−→
N captures the coefficients a, b, and c in the general equation of first

degree in three variables ax + by + cz + d = 0 representing a plane. The
coefficient d is obtained by substituting with the coordinates of the origin O,
which leads to d = (O − P1) ·

−→
N .

class Plane E3d {
private:

Vector E3d N;
double d;

public:
Plane E3d(const Point E3d& p1, const Point E3d& p2, const Point E3d& p3)
{

Vector E3d v1 = p2 − p1;
Vector E3d v2 = p3 − p2;
N = cross product(v1, v2);
d = dot product((O − p1), N);

}
...

};

3.5 Lines in Space

An implementation for Segment E3d will parallel that for Segment E2d and
need not be discussed, but implementing a class for a line in space offers a
baffling question. A line can be constructed as that passing by two points or
as the one at the intersection of two planes. Any number of other options are
possible. One could ask for the line passing by a point and parallel to another
line, and so on.

But what member variables should a line object have? Certainly two points
can be stored. If two planes are used to construct the line, one can determine
and then store two points at the intersection.

Yet a pair of points are merely two points on the line. They are not intrinsic
to the line. Two points are convenient. They make it possible to parameterize
the line (for example, to sort intersections—see Chapter 23). The parametric
equation of a line passing by two (distinct) points S and T can be written as

P = S + α(T − S).

The types of the variables in this equation parallel those in an implementation.
T − S is a vector, α is a (real) scalar, and the sum of a point and a vector,
S + α(T − S), is a point.
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We leave the intrinsic form for a line in space to the general case in pro-
jective geometry (see Plücker coordinates in § 12.4), although the idea can be
applied (less elegantly) in Euclidean geometry. We will be content instead right
now with the following as a start for an implementation for a line in space:
class Line E3d {
private:

Point E3d source, target;
public:

Line E3d( const Point E3d& source, const Point E3d& target )
: source(source), target(target) {}

...
};

3.6 Sidedness Predicates in 3D

The three-dimensional predicates will resemble their two-dimensional variants
described in § 2.1.

Matrix-Form of the Side-of-Plane Predicate

Consider that we are given four points in space

Pi(xi, yi, zi), for i = 1, . . . , 4,

and that we would like to determine whether P4 lies on the positive or the
negative halfspace defined by P1, P2, P3, which we assume not to be colinear.
We further define the positive side of the plane passing by these three points P1

P3

P4

P2

such that it lies on the same side as the normal vector
−→
N =

−−−→
P1P2 ×

−−−→
P2P3 .

We say then that a point on the same side as the normal vector lies on the
plane’s positive halfspace. To determine which side P4 lies in, we compute the P1

P3

P4

P2

−→
N

dot product
−→
N ·

−−−→
P1P4 = (

−−−→
P1P2 ×

−−−→
P2P3 ) ·

−−−→
P1P4

and that leads to the determinant:
−−−→
P1P2

−−−→
P2P3

−−−→
P1P4

x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1

,

which is
x1 x2 − x1 x3 − x1 x4 − x1

y1 y2 − y1 y3 − y1 y4 − y1
z1 z2 − z1 z3 − z1 z4 − z1
1 0 0 0

,

resulting in the homogeneous form

x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

. (3.2)
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Matrix Form of the Side-of-Sphere Predicate

A sphere with center (xc, yc, zc) and radius r has the equation

(x− xc)2 + (y − yc)2 + (z − zc)2 = r2,

which expands to

(x2 + y2 + z2)− 2(xxc + yyc + zzc) + (x2
c + y2

c + z2
c − r2).

More generally,

A(x2 + y2 + z2) +Bx+ Cy +Dz + E = 0

is the equation of a sphere in space provided that A 6= 0. This equation can be
written as the determinant:

x2 + y2 + z2 x y z 1
x2

1 + y2
1 + z2

1 x1 y1 z1 1
x2

2 + y2
2 + z2

2 x2 y2 z2 1
x2

3 + y2
3 + z2

3 x3 y3 z3 1
x2

4 + y2
4 + z2

4 x4 y4 z4 1

= 0, (3.3)

where

A =

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

, B =

x2
1 + y2

1 y1 z1 1
x2

2 + y2
2 y2 z2 1

x2
3 + y2

3 y3 z3 1
x2

4 + y2
4 y4 z4 1

, . . . .

As with a circle in the plane, we conclude that it is best to incur a small
efficiency hit and spare clients from having to worry about the order with which
they define the four points describing the sphere. That leads to the following
equation:

x2 + y2 + z2 x y z 1
x2

1 + y2
1 + z2

1 x1 y1 z1 1
x2

2 + y2
2 + z2

2 x2 y2 z2 1
x2

3 + y2
3 + z2

3 x3 y3 z3 1
x2

4 + y2
4 + z2

4 x4 y4 z4 1

×

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

= side of sphere(P ,P1,P2,P3,P4)


< 0 inside,
= 0 on the sphere boundary,
> 0 outside.

(3.4)

3.7 Dominant Axis

As in E 2 (§ 2.4), the dominant axis of a vector in E 3 is frequently needed in
geometric computing. Determining whether a ray intersects a polygon is one
classic example (§ 23.2).
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If the vector (or direction) in question is the normal to a plane, then the
dominant axis suggests the principal plane on which one could project orthog-
onally to yield the least distortion. Yet since for some applications we may
need to distinguish between positive and negative dominant orientations, six
enumerations are declared.
enum Dominant E3 { E3 POSX, E3 NEGX, E3 POSY, E3 NEGY, E3 POSZ, E3 NEGZ };

Finding the axis (and orientation) in question requires a few simple compar-
isons.
Dominant E3 dominant(double dx, double dy, double dz)
{

const double zero = 0.0;
double dxabs = dx >= zero ? dx : (−dx);
double dyabs = dy >= zero ? dy : (−dy);
double dzabs = dz >= zero ? dz : (−dz);

if(dxabs >= dyabs && dxabs >= dzabs)
return ((dx > zero) ? E3 POSX : E3 NEGX);

else if(dyabs >= dzabs)
return ((dy > zero) ? E3 POSY : E3 NEGY);

else
return ((dz > zero) ? E3 POSZ : E3 NEGZ);

}

Finally, a geometric library would provide (nonmember) functions that report
the dominant axis.
Dominant E3 dominant(const Vector E3d& V)
{

return dominant(V.x(), V.y(), V.z());
}

Occasionally, the least dominant axis is also needed (§ 9.3).

3.8 Exercises

3.1 Write a constructor for a Line E3d class that takes two planes as input
and determines two points on the line to initialize the member variables.
Also write test cases that cover potential errors.

3.2 The C language (and, by extension, the C++ language) makes it possible
to define an anonymous, or nameless, type.

struct { float x; float y; float z; } myPoint;

In the above expression the type remains unnamed—only the object is
named. The use of anonymous types is generally undesirable, but objects
can be nameless through the use of pointers. In the following code, A
is a named Point E3d object, whereas B is the name of a pointer. B
points to a nameless, or anonymous, object. The use of a reference (&)
creates an additional name for an object (regardless whether the object
was previously named).

Point E3d A = Point E3d();
Point E3d ∗ B = new Point E3d();
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Draw a sketch that illustrates the following code while showing the
name(s) of each object or pointer.

Point E3d p1 = Point E3d();
Point E3d & p2 = p1;
Point E3d ∗ p3 = &p1;
Point E3d ∗p4 = new Point E3d();
Point E3d ∗∗p5 = &p4;

3.3 Implement a class Sphere E3d that represents a sphere in E 3 and imple-
ment the side-of-sphere predicate.

3.4 Implement an intersection function between a Sphere E3d object and a
Ray E3d object, which represent a sphere and a ray in E 3, respectively.

3.5 A useful, perhaps necessary, member function in a Vector E3d is the
unary negation operation. Yet simply writing

class Vector E3d
{

...
Vector E3d
operator−() { return Vector E3d(−x,−y,−z); }

};

is flawed. The function must be defined as a const function. Give two
(conceptually different) examples of client code that are reasonable, yet
that would only work if unary negation is a const function.

3.6 This exercise is from Coxeter’s Introduction to Geometry [27].

Show that the following statement holds.

The plane through three given points (xi, yi, zi)(i = 1, 2, 3)
is

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x y z 1

= 0.

If the requirement of passing through a point is replaced (in
one or two cases) by the requirement of being parallel to a
line with direction (Xi, Yi, Zi), the corresponding row of the
determinant is replaced by Xi, Yi, Zi, 0.
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4 Affine Transformations

What are the properties of applying linear functions on the Cartesian coor-
dinates of a point? The resulting affine transformations can be conveniently
expressed in matrix form and can be classified according to the type of trans-
formation they produce.

Affine transformations are canonical in visual computing. Viewport map-
ping and orthogonal view transformations are needed in computer graphics
and the reverse problem, finding the mapping given matched sets of points, is
needed in computer vision and in computer animation. An important degen-
erate transformation that is used for generating fake shadows is discussed in
Exercise 12.6, where it is cast as an instance of the more general set of projec-
tive transformations [13].

4.1 Affine Transformations in 2D

Transforming Points

Consider the transformations defined by linear functions in x and y that can be
applied on a given point P (x, y) in the plane. All linear functions T can be
represented using the two equations

x′ = ax+ by + e,

y′ = cx+ dy + f.

We say that a point Q(x′, y′) is the image of P under the transformation T and
write Q = T (P ). For convenience, we can write the two equations in matrix
form as [

x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
e
f

]
or as Q = MP +−→v , where

M =
[
a b
c d

]
, −→v =

[
e
f

]
.

We first confirm that our notation is sensible. We define the product of the ma-
trix M and the point P , MP , as a point and, as seen in Chapter 1, the addition
of a point and a vector, MP + −→v , results in a point that is geometrically the
translation of the point by the magnitude and orientation of the vector.

Observe that we have a choice between premultiplying

P ′ = MP
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and postmultiplying
P ′ = PM

a point P to yield the transformed point P ′. The second would appear to
be more intuitive since concatenating transformations can be performed by
appending transformations, yet the former offers the advantage of coinciding
with function composition and is the one used in this text.

Types of Affine Transformations

Translation

A translation in the plane can be achieved by setting the transformation matrix
M to the identity matrix

I =
[

1 0
0 1

]
and setting −→v to the desired translation.

Despite its simplicity, it is useful to talk about several properties of trans-
lation. A translation preserves angles between lines and so it also preserves
parallelism—two parallel lines remain parallel after translation. And because
translations also preserve distances, areas are preserved. We say that transla-
tions are a rigid-body transformation (§ 4.2) because an animation of a figure
under translation would generate a faithful simulation of the body animated
with no deformation.

To animate a figure under translation, it suffices to scale the translation
vector −→v by α ∈ [0..1]. A translation can be inverted using a vector −−→v .

Scale

Uniformly scaling a figure can be achieved by applying a factor k to the iden-
tity matrix I . Clearly, uniform scaling preserves angles and parallelism, but
does not preserve areas. If a matrix[

k 0
0 k

]
is used to scale a closed figure, the area of the figure after scale will be k2 times
its area before scaling.

Nonuniformly scaling a figure by kx in the x-direction and by ky in the
y-direction can be performed by multiplication by the matrix[

kx 0
0 ky

]
.

The ratio of areas after scaling to the areas before scaling is kxky .

Rotation

It is simplest to consider first rotation about the origin. To find the coordinates
of a point P (x, y) after rotation by an angle φ, we express P in polar coordi-
nates (r cos θ, r sin θ) and write the coordinates of the rotated point P ′(x′, y′)
as (r cos(θ + φ), r sin(θ + φ)).
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Because

x′ = r cos(θ + φ) = r(cos θ cosφ− sin θ sinφ),
y′ = r sin(θ + φ) = r(cos θ sinφ+ sin θ cosφ),

a rotation by an angle φ can be expressed in matrix form as[
x′

y′

]
=

[
cosφ − sinφ
sinφ cosφ

] [
r cos θ
r sin θ

]
=

[
cosφ − sinφ
sinφ cosφ

] [
x
y

]
.

From that we conclude that the determinant of a transformation matrix that

θ

φ

P ′(x′, y′)

P (x, y)

x

y

represents rotation is 1:

|M | =
∣∣∣∣ cosφ − sinφ

sinφ cosφ

∣∣∣∣ = 1.

The formula for a rotation arises sufficiently often that it is worthwhile re-
calling it. What is being rotated in this formulation is a point—not the axes. If
the latter are to be (also counterclockwise) rotated, the transpose of the matrix
should be used instead.

Transforming Vectors

It is reasonable to define rotation and scale transformations on vectors in the
same way they are defined for points, but what is the result of applying a trans-
lation on a vector? If vectors are used to model forces, accelerations, or even
translations themselves, we would not want either the magnitude or the orien-
tation of the vector to be modified by a translation.

When we observe that the result of applying a linear transformation on a
point differs from that of applying it on a vector, another advantage for having
separate types for points and vectors (§ 1.2) becomes apparent: The separation
ensures that transformations can be applied differently depending on the object
transformed.

−→v

T −→
v′ = T (−→v ) = −→v

T

P
T P ′ = T (P )

Applying scale and rotation transformations on vectors and points, and
applying translations on points, we write

−→
v′ = M−→v =

[
a b
c d

] [
vx
vy

]
,

P ′ = MP + T =
[
a b
c d

] [
x
y

]
+

[
tx
ty

]
.

Transforming Directions and Lines

After we observe in Chapter 16 the many advantages that homogeneous co-
ordinates have for Euclidean geometry, it will become clear that transforming
directions and lines in Euclidean geometry is but a special case of transform-
ing lines in projective geometry, so we leave both out at this time and take the
topic up again in § 12.6.

Notice that points and vectors transform similarly, but as suggested in § 1.3,
directions do not transform as vectors. We view directions in E 2 as placehold-
ers for an oriented line (the direction is orthogonal to the line) and directions in
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E 3 as a placeholder for an oriented plane (the direction is the plane’s normal
vector). Directions should be seen as an incomplete object waiting to be asso-
ciated with a line or a plane. Occasionally, we are truly only interested in the
abstract notion of a direction (such as when used for shading; see Chapter 21).
Regardless of whether the direction object will remain “incomplete” and used
for shading or is used to create a line, a plane, or a set of lines or planes,
directions transform as a line or a plane would have (described on page 133).

4.2 Properties of Affine Transformations

It is interesting to ask which properties of figures are preserved by a linear
transformation. From the previous discussion, and as seen by applying vari-
ous linear transformations to a triangle or a grid as shown in Figure 4.1, it is
clear that linear transformations do not preserve lengths, angles, nor, conse-
quently, areas. Illustrating the image of a uniform grid reveals the effect of
linear transformations; parallelism is the only property preserved. As we will
see in Part II, the distinguishing characteristic of such affine transformations
is that they preserve parallelism and that they map affine points (those not at
infinity) to other affine points. According to Coxeter, Blaschke credits Euler
for having coined the term “affine” (German “affin”) [27, p. 191].

Figure 4.1
Affine transformations

only preserve parallelism.

It is frequently useful to move a solid object without deforming it, or with-
out changing the distances between its points or the angles between its lines.
The subset of linear transformations that preserves rigidity is the set of rigid-
body transformations. Only rotations and translations are rigid-body transfor-
mations. The characterization needed for a linear transformation to be rigid is
for the condition ad− bc = 1 to be satisfied, or for |M | = 1. This suggests the
following types of affine transformations.

Transformation Rigid-body transformation Affine transformation
Preserves parallelism parallelism

distances and angles
Types rotation rotation

translation translation
scale
shear

The reader who was not convinced in § 1.2 that points cannot be added, but
that they can be subtracted (yielding a vector), may be convinced by a different
argument based on transformations. The sanity of any transformation we apply
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means that applying the transformation before and after a geometric operation
ought to yield the same result. But consider what would happen if adding two
points is allowed [16]. The expression T (P1 +P2) means that the coordinates
would be added and that the translation component of the transformation would
appear once in the outcome. If we instead write T (P1) + T (P2), then both
points will be transformed and two translations would appear in the outcome.

That also suggests why subtracting points should be legal. The two trans-
lations would cancel out, which is exactly the effect we desire for a trans-
formation on a vector (the result of subtracting two points); the translation
component does not affect the vector.

4.3 Composition of Affine Transformations

The composition of two affine transformations T1 and T2 may be performed in
two steps by evaluating T = T2(T1(P )), but if the combined transformation
is to be applied frequently, it is advantageous to capture it in an object T =
T2 ◦T1. The composition can be determined by combining the linear functions[

x′

y′

]
=

[
a1 b1
c1 d1

] [
x
y

]
+

[
e1
f1

]
and [

x′′

y′′

]
=

[
a2 b2
c2 d2

] [
x′

y′

]
+

[
e2
f2

]
,

leading to[
x′′

y′′

]
=

[
a2 b2
c2 d2

] [
a1 b1
c1 d1

] [
x
y

]
+

[
a2 b2
c2 d2

] [
e1
f1

]
+

[
e2
f2

]
,

which reveals that the first translation combines with the second 2 × 2 matrix
into a translation component.

Likewise, the composition of two affine transformations in Euclidean space
is  x′′

y′′

z′′

 =

 a2 b2 c2
d2 e2 f2
g2 h2 i2

 a1 b1 c1
d1 e1 f1
g1 h1 i1

 x
y
z


+

 a2 b2 c2
d2 e2 f2
g2 h2 i2

 j1
k1

l1

 +

 j2
k2

l2

 .
After hand-programming this expression, we would be tempted to use two-

dimensional arrays and three nested loops for matrix multiplication. But the
tedium in coding the expression by hand will likely pay off. We can confirm
that that is the case by comparing the number of cycles needed for a direct
memory access with those needed for an indirect access, as would be needed
if indexing is used.
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4.4 Affine Transformation Objects

In the following possible design for a class for affine transformations in the
plane, four matrix elements and a vector are stored individually. Whether stor-
ing a vector is a wise choice (as opposed to an additional two double variables)
depends on the compiler; the designer should ensure that no penalty is caused
by the compiler used. Using four variables is almost surely preferable over
using an array of four variables double m[4] on any compiler, however, unless
the designer can confirm that an optimizing compiler will replace expressions
such as m[0] with variables that do not use indirection (and therefore require
two memory accesses). These issues would not matter if efficiency is not a
main concern or if all applications of affine transformations will occur outside
performance bottleneck loops.

Since we chose for our point and vector objects to be immutable (§ 2.6), the
two transformation functions must return new objects and leave the original
objects unchanged.

class Affine transformation E2d
{

double m00, m01;
double m10, m11;

Vector E2d translation;
public:

Affine transformation E2d(
const double& m00 = 1.0,
const double& m01 = 0.0,
const double& m10 = 0.0,
const double& m11 = 1.0,
const Vector E2d& translation = Vector E2d(0.0,0.0))

{
m00 = m00; m01 = m01;
m10 = m10; m11 = m11;
translation = translation;

}

Point E2d transform(const Point E2d& P)
{

double x, y;
x = m00 ∗ P.x() + m01 ∗ P.y() + translation.x();
y = m10 ∗ P.x() + m11 ∗ P.y() + translation.y();
return Point E2d(x,y);

}

Vector E2d transform(const Vector E2d& V)
{

double x, y;
x = m00 ∗ V.x() + m01 ∗ V.y();
y = m10 ∗ V.x() + m11 ∗ V.y();
return Vector E2d(x,y);

}
};

To spare clients of our code the trouble of hand-constructing the entries,
convenience constructors for various types of transformations are needed. We
could contemplate determining at run time which transformation is requested
and write the following code:

enum Affine transformation E2d types {
IDENTITY, SCALE, TRANSLATION, ROTATION

};
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Affine transformation E2d::Affine transformation E2d(
Affine transformation E2d types type,
const T& x, const T& y)

{
if(type == TRANSLATION) {

m00 = 1.0; m01 = 0.0;
m10 = 0.0; m11 = 1.0;
translation = Vector E2d(x,y);

}
else if(type == SCALE) {

m00 = x; m01 = 0.0;
m10 = 0.0; m11 = y;
translation = Vector E2d(0.0,0.0);

}
}

But it is a simple matter to move the choice of the initialization code used to
compile time. We borrow an idea from the CGAL project [23] (see Chapter 18)
and use four global and vacuous objects to determine through overloading the
type of the affine transformation intended.

class Identity {};
class Scale {};
class Rotation {};
class Translation {};
Identity IDENTITY;
Scale SCALE;
Rotation ROTATION;
Translation TRANSLATION;
class Affine transformation E2d
{

double m00, m01;
double m10, m11;
Vector E2d translation;

public:
void set to identity()
{

m00 = 1.0; m01 = 0.0;
m10 = 0.0; m11 = 1.0;

}
Affine transformation E2d(

const Identity& t)
{

set to identity();
}

Affine transformation E2d(
const Scale& s,
const double& xscale,
const double& yscale)

{
m00 = xscale; m01 = 0.0;
m10 = 0.0; m11 = yscale;
translation = Vector E2d(0,0);

}
Affine transformation E2d(

const Translation& t,
const Vector E2d& translation)

{
set to identity();
translation = translation;

}
Affine transformation E2d(

const Rotation& r,
double angle)

{
double c = cos(angle);
double s = sin(angle);
m00 = c; m01 = −s;
m10 = s; m11 = c;
translation = Vector E2d(0,0);

}
...

};

4.5 Viewport Mapping

The next structure we consider has been termed an axis-parallel rectangular
region, a viewport, a bounding box, and an Axis-Aligned Bounding Box. All
refer to a rectangle with sides parallel to the major axes, an often-needed struc-
ture in geometric and graphical applications. The term viewport is used when
referring to some interesting subset of the plane after an orthogonal projection
in 3D (see § 4.6), but the term is used by extension for applications operating
exclusively in the plane.
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The problem is to map a region in an xy-plane bounded by the coordinates
(xmin, xmax, ymin, ymax) to another region (x′min, x

′
max, y

′
min, y

′
max). Aside from

the difficulty one would have in remembering the order of these parameters
to a function (“is it not (xmin, ymin, xmax, ymax)?”), there is another reason—
coordinate freedom, discussed in Chapter 17—why a superior approach is to
define a viewport using two points. A possible implementation follows:
class Bbox E2d
{

Point E2d LL; // lower left corner
Point E2d UR; // upper right corner

public:
Bbox E2d() : LL(), UR() {}
Bbox E2d(const Point E2d& p) : LL(p), UR(p) {}
Bbox E2d(const Point E2d& pLL, const Point E2d& pUR)

: LL(pLL), UR(pUR) {}
T get width() const { return UR.x() − LL.x(); }
T get height() const { return UR.y() − LL.y(); }
Point E2d LL() const { return LL; }
Point E2d UR() const { return UR; }
Point E2d center() const { return Point E2d(

( LL.x() + UR.x())/2.0,
( LL.y() + UR.y())/2.0); }

};x

y

ymin

ymax

y′
min

y′
max

x
m

in

x
m

a
x

x
′ m

in

x
′ m

a
x

Aside from implementation details, the affine transformation in viewport
mapping is a combination of scale and translation transformations. The map-
ping could be either derived directly

x′ = x′min +
x− xmin

xmax − xmin
(x′max − x′min)

y′ = y′min +
y − ymin

ymax − ymin
(y′max − y′min),

or an affine transformation object could be constructed using a combination of
a translation to the origin, a scale, and a translation from the origin.

A class for bounding boxes in Euclidean space could also be similarly de-
fined.
class Bbox E3d
{

Point E3d LL;
Point E3d UR;

public:
...

};

4.6 Orthogonal Matrices

Consider forming a transformation matrix using two orthogonal unit vectors
−→v1 and −→v2 . We saw that there are several properties to the two vectors.
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The inner product of a vector of unit magnitude by itself is unity.

x1x1 + y1y1 = 1 =⇒ −→v1 · −→v1 = 1; |−→v1 | = 1,
x2x2 + y2y2 = 1 =⇒ −→v2 · −→v2 = 1; |−→v2 | = 1.

Also, since −→v1 and −→v2 are orthogonal,

x1x2 + y1y2 = 0 =⇒ −→v1 · −→v2 = 0.

These equations make it possible to find the product of the transformation ma-
trix M with its transpose MT :

MTM =
[
x1 y1
x2 y2

] [
x1 x2

y1 y2

]
=

[
1 0
0 1

]
. (4.1)

Proper and Improper Orthogonality

The previous equations remain valid even if the two vectors are swapped, but
the determinant will be of opposite sign. To find the sign (and value) of the
determinant, we write the two vectors in polar form:

−→v1 =
[

cosφ
sinφ

]
, −→v2 =

[
cos(φ+ π/2)
sin(φ+ π/2)

]
.

Replacing the identities cos(φ + π/2) = − sinφ and sin(φ + π/2) = cosφ,
we can rewrite the matrix

M =
[

cosφ − sinφ
sinφ cosφ

]
, (4.2)

and it now becomes clear that |M | = 1. An orthogonal matrix satisfying the
condition |M | = 1 is called a proper orthogonal matrix. If the two vectors
are swapped, or conversely, if the two angles representing the two vectors are
φ and φ − π/2—in that order—the matrix is termed an improper orthogonal
matrix and its determinant |M | = −1.

As is clear from Eq. (4.1), the inverse of an orthogonal matrix is particu-
larly easy to compute:

M−1 = MT .

Because transposing a matrix does not change its determinant, it is also
clear that

|M | = 1 =⇒ |MT | = 1 =⇒ |M−1| = 1

and

|M | = −1 =⇒ |MT | = −1 =⇒ |M−1| = −1.

Relating Eq. (4.2) to the discussion in § 4.1, we also conclude that if a proper
orthogonal matrix is used as a transformation matrix, the resulting transforma-
tion is a rotation about the origin.
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Because M satisfies multiple constraints, it is sufficient to know one of
the two vectors to determine the second and hence the matrix. If, say, −→v1
is known, −→v2 can be determined since its angle in polar coordinates will be
tan−1 y1/x1 + π/2. In practice, and as we will see in Chapter 10, there is no
need to invoke trigonometric functions.

4.7 Orthogonal Transformations

Orthogonality in Three Dimensions

If three unit orthogonal vectors −→v1 , −→v2 , and −→v3 are used to define a 3 × 3
matrix M , then MTM = I . In analogy with the two-dimensional case, that
each vector is of unit magnitude results in the unit values along the diagonal
and that each pair of vectors are orthogonal results in the zeros outside the
diagonal.

Here also |M | remains either ±1. If |M | = +1, M is termed proper
orthogonal and if |M | = −1, it is termed improper orthogonal.

If only two of the three basis vectors are known, it is possible to uniquely
determine the third. The constraint that the determinant of the matrix be unity
makes it possible to deduce the components of the third vector: x1 x2 x3

y1 y2 y3
z1 z2 z3

 .
Writing

x3 = y1z2 − z1y2,

y3 = −x1z2 + z1x2,

z3 = x1y2 − y1x2

results in a vector −→v3 that is orthogonal to both −→v1 and −→v2 , which can be more
concisely written as the cross product−→v3 = −→v1 ×−→v2 (§ 2.2). Note that the other
orthogonal vector, −−→v3 = −→v2 ×−→v1 , yields an improper orthogonal matrix.

Orthogonal View Transformation

Consider a virtual eye situated at E(ex, ey, ez). The eye models an observer
or a virtual camera and we wish to render, or draw, a representation of three-
dimensional objects on a two-dimensional surface that would be a faithful ren-
dition of what would be captured by the virtual eye. This problem has long
been considered by artists, but here we do not study the general problem, which
involves perspective (see Chapter 11), but only orthographic projection. Our
objective is to define a plane, called the view plane or the image plane, in 3D
and to project points on it. To find the projection of each point, a perpendicular
line is erected from the point to the image plane and the point of intersection
is the projection of the point.

The orientation of the view plane is defined by the view direction
−→
d , a unit

vector orthogonal to the image plane. Our objective is to find a transformation
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that maps E to the origin and that maps
−→
d to the negative z-axis. The image

plane is then parallel to the z = 0 plane and the orthographic projection of a
point can be found by simply ignoring its z-coordinate after the transformation.

But the two constraints E and
−→
d do not define a unique rigid-body trans-

formation matrix since the orientation of the virtual camera could be rotated
along the view axis without changing either E or

−→
d .

E

−→
d

x

y

z

−→v ?

A routine for computing the orthogonal view transformation could make
it simpler for a user by not expecting a value for the side vector −→s , but by
using by default a convention that a photographer may use naturally. If we
assume that gravity is directed along (0,−1, 0), we can define the up direction
−→u (0, 1, 0).

E

−→
d

x

y

z

−→v
−→u
−→s

The triple of vectors (−→s ,−→v ,
−→
d ) defines an orthogonal transformation ma-

trix. If −→v is constrained to lie in the plane carrying both
−→
d and −→u , −→s can be

found by computing −→s = −→u ×
−→
d and in turn −→v =

−→
d ×−→s .

If the triple of vectors (−→s ,−→v ,
−→
d ) is used as the columns of an orthogonal

transformation  sx vx dx
sy vy dy
sz vz dz

 ,
the transformation would map the basis axes to the view frame. Since we wish
to apply the inverse of this map, we use instead the matrix transpose.

V =

 sx sy sz
vx vy vz
dx dy dz

 .
A translation from E to the origin followed by the transformation effected by
V yields the desired orthogonal view transformation.

Axonometric View Transformation

x

y

z

x

y

z

x

y

z

x

y

z

xz-dimetric yz-dimetric xy-dimetricisometric

Figure 4.2
Types of axonometric projections

The field of engineering drawing has an established graphics tradition that
precedes the development of computing. A drafting engineer wishing to com-
municate to a field engineer can facilitate the task of the latter by using an
orthographic projection, where the view direction is parallel to one of the
main axes, or by using an axonometric projection, which is also an orthogonal
projection. Axonometric projections are classified according the angle of the
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projectors as shown in Figure 4.2. If the angles separating the view direction
from the three axes are equal, the projection is said to be isometric—knowing
one scale suffices to recover lengths parallel to the main axes. If two scales
are needed, the projection is said to be dimetric and if three are needed, the
projection is said to be trimetric.

4.8 Euler Angles and Rotation in Space

One way of applying rotations in 3D is to perform successive rotations around
one of the basis axes, referred to as rotation by Euler angles. The matrix needed
in each case is akin to performing a rotation in 2D [Eq. (4.2)]—with one of the
coordinates remaining invariant, which results in the following matrices:

Rx =

 1 0 0
0 cosφx − sinφx
0 sinφx cosφx

 ,
Ry =

 cosφy 0 sinφy
0 1 0

− sinφy 0 cosφy

 ,
Rz =

 cosφz − sinφz 0
sinφz cosφz 0

0 0 1


Unlike rotations in the plane, rotations in 3D are not commutative.

Figure 4.3 shows that the results obtained from reversing the order of two ro-
tations are, in general, different. Hence, three rotations must also be applied in
some given order, but there is no canonical order for applying the three rotation
matrices. If Euler angles are to be used, a choice must be made for such an
order. This in turn makes it difficult to use Euler angles because each rotation
is applied on the transformed object, which is unintuitive. Worse, the first two
angles of rotation can be chosen (to a positive or a negative quarter turn) such
that the third rotation effects in fact a rotation around one of the two previous
axes. In the context of gyroscopes losing one degree of freedom, this phenom-
enon has acquired the name gimbal lock [46], a term also used in geometric
computing regardless of the application.

Figure 4.3
Rotation in space is

not commutative.
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The code labeled “euler-angles” accompanying Exercise 4.6 provides a
user interface for appreciating the limitations of using Euler angles in prac-
tice. Chapter 10 pursues the natural object for performing rotations in space,
the quaternion.

4.9 Rank of a Matrix

Rank of Mappings in the Euclidean Line

If a transformation on the Euclidean line is described by x′ = ax + b, then
the only way for the 1 × 1 matrix M = [a] to be singular is if a = 0. The
determinant of M is then zero and the mapping transforms all points on the
Euclidean line to the point with coordinate b. It is interesting to consider this
trivial case before looking at the plane and in space because there are degrees
of singularity of a matrix M , with different resulting transformations.

Rank of Mappings in the Euclidean Plane

A matrixM =
[
a b
c d

]
is invertible if and only if the two vectors

[
a c

]T
and

[
b d

]T
are linearly independent. If the two vectors are linearly inde-

pendent, the rank of M is 2, the determinant is not zero, and M is invertible.
If the two vectors are not linearly independent, but are not the zero vector, the
rank ofM is 1, the determinant is zero, andM is not invertible. In that case the
transformation defined by M collapses all points in the plane to a line. Since
more than one point, in fact a line or a linear subspace of the plane, maps to a
single point, the mapping is no longer one-to-one and it is not possible to find
a unique inverse for M .

A square matrix M (of arbitrary order) can have rank 0 only if all entries
are 0. In that case all points map to a single point, the one determined by the
translation part of the affine transformation.

Rank of Mappings in Euclidean Space

The different cases for transformations in 3D should now be clear. An invert-
ible 3 × 3 matrix M has rank 3. If the rank of M is 2, all points map to one
plane in space. An even “more singular” 3 × 3 matrix M has rank 1. In that
case all points map to one line in space.

4.10 Finding the Affine Mapping Given the Points

We have so far considered that we have a set of points along with an affine
transformation and looked at how the transformed points can be derived. Sup-
pose that we have instead both the set of points and their image, but wish to
find the affine mapping. Since the mapping is linear, the problem reduces to
solving a set of linear equations. We consider the cases of finding the mapping
in one, two, and three dimensions.
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Affine Mappings in the Euclidean Line

We start by considering the simple case of an affine mapping on the Euclidean
line. Since such a mapping is defined by two scalars a and b, x′ = ax+ b, two
points and their images are needed to find the mapping. The scalar b acts as a
translation and a as a scale. If a > 0, then the order of points is preserved after
the transformation. If a = 0, all points in the domain map to one point in the
range and the mapping is not invertible.

E1

A B

A′ B′

If a 6= 0, we say that the mapping is one-to-one and onto. Each point in
the domain maps to exactly one point and one point in the range also has one
pre-image point.

Affine Mappings in the Euclidean Plane

We can reason by analogy in two dimensions. If three distinct points are given
in the domain and their images are three distinct points, the affine mapping can
be found by solving two sets of three equations in three unknowns:

x′ = ax+ by + e,

y′ = cx+ dy + f.

But in 2D it is no longer sufficient for the three points in either the domain
or the range to be distinct; they must also not be colinear. If both are, then not
enough information is provided about the points not lying on either line. If one
triple of points is colinear, but the other is not, the mapping can be found, but

A

B

C

A′ B′

C′

M =?E2

if the mapping (or its inverse) collapses three noncolinear points onto a line,
then it must also be the case that it collapses all points onto the same line; the
transformation matrix is singular.

Affine Mappings in Euclidean Space

Four pairs of points need to be known to find a unique affine mapping in
Euclidean space. The four points (in either the source or the image) cannot
be coplanar, which also implies that no three of the four points may be colin-
ear and that no two points may be coincident. The numbers of points that need
to be known for the affine mapping to be uniquely defined, one more point
than the dimension, should be compared with the case in projective geometry,
discussed in Chapter 11.

4.11 Exercises

4.1 Identify the transformation that results from each of the following affine
transformation matrices.

(a) M =
[

3/5 −4/5
4/5 3/5

]
(b) M =

[
2 0.2
0 1

]
, T =

[
−3

2

]
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4.2 The objective of this project is to gain an insight into the significance
of the determinant of a 2× 2 transformation matrix by manipulating its
coefficients. The start-up code labeled “slide-determinant” accompany-
ing this chapter allows you to modify one of the two column vectors of
the transformation matrix (while leaving the other column vector con-
stant at [1, 0]T ). Modify the source code to have instead four sliders that
modify the value of the four matrix coefficients in the range [0 · · · 1].
Also display the value of the determinant at each manipulation of one
of the sliders. What conclusions do you draw regarding the connection
between the areas of the square before and after transformation and the
determinant? Refer to Appendices B and C.

4.3 “If the determinant of a square matrix M is 1, then M is proper orthog-
onal.”

“If the determinant of a square matrix M is −1, then M is improper
orthogonal.”

For each of these two statements, mention whether the statement is cor-
rect and then argue why it is or give a counterexample.

4.4 Even though an order 2 proper orthogonal transformation matrix is de-
fined by two vectors, the first of the two vectors is sufficient to determine
the second. Write a brief code snippet with that objective.

4.5 The objective of this project is to study transformation matrices and the
different animations obtained when using different ways of interpolating
transformation matrices.

Modify the start-up code labeled “animation-in-2d” to animate the “small
house” from one keyframe to another in the plane. Compare the result
of animating the house by using the three following approaches:

• Linear interpolation of the house vertices

• Linear interpolation of the entries in the two transformation matri-
ces

• Linear interpolation of the scale, rotate, and translate parameters

Ensure that the interpolation of the rotation is performed on the shorter
of the two arcs on a circle. If you see a similarity between two methods,
confirm you see why that is the case algebraically also.

4.6 Moving the three sliders in the start-up program labeled “euler-angles”
manipulates an object using its Euler angles. Mentally thinking of an
orientation in space and then attempting to reach it using the sliders will
suggest how difficult it is to use Euler angles to orient objects.

Modify the start-up code so that two orientations are defined by two sets
of Euler angles. Clicking a push button would thereafter animate the
object from one orientation to the other using linear interpolation of the
Euler angles. Ensure that for each of the three interpolations, the shortest
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path from one angle to the other is taken (so that, say, only 20 degrees
are traversed if the two angles are 350 and 10).

The objective of implementing this project is to appreciate how unreal-
istic the motions generated by using Euler angles to animate an object
are.

4.7 Write a program that generates an encapsulated postscript file (see Ap-
pendix A) consisting of a drawing of the surface y = sin(

√
x2 + z2) by

illustrating its intersection with planes perpendicular to the x- and to the
z-axes. It should be possible to print the file you generate by directly
sending it to a printer (i.e., without necessarily embedding it in another
document).

4.8 Two planar polygons are affinely equivalent if one can be obtained from
the other by an affine transformation. How would you determine whether

a. a given quadrilateral is affinely equivalent to a square?

b. a given hexagon is affinely equivalent to a regular hexagon? (A
hexagon is regular if it has equal sides and equal internal angles—
§ 26.3.)

c. a given triangle is affinely equivalent to an equilateral triangle?
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5 Affine Intersections

We consider intersection problems between various types of geometric objects
in the Euclidean plane. Variations on intersection problems in which one of the
two objects is a rectangle have traditionally been called clipping problems. In
these variations, the rectangle models a viewport and one wishes to discard the
set of points lying outside the viewport. Because clipping problems frequently
arise in the inner loops of geometric and graphical applications, it is worth-
while to examine minute improvements—even when there is no asymptotic
change in run time.

5.1 Nomenclature

The Bbox E2d and Bbox E3d objects introduced in Chapter 4 capture only
those that are axis-aligned, but a rectangular area of the plane and a paral-
lelepiped in space do not necessarily have to be aligned with the coordinate
axes.

Several terms have been used in the literature to refer to these two objects.
Viewport is used when the use of a Bbox E2d object as an abstraction for an
output device is stressed. Axis-aligned bounding box (AABB) is used when
its orientation is stressed. AABB is also used in contrast to Object-oriented
bounding box (OOBB). OOBB is used when the smallest-sized rectangle or
parallelepiped is used to replace another object. (“Object” here is used in the
physical, not the programming language, sense). By reducing the complexity
of the object considered, AABBs and OOBBs are useful in intersection com-
putations: If a ray does not intersect the simpler object and that object bounds
more complex objects, the latter do not need to be intersected with the ray. The
term axis-parallel rectangle, in the obvious sense, is also used.

5.2 Finding Line and Segment Intersections

Line Intersection

In symmetry to the construction of a line from two points (§ 1.5), the intersec-
tion of two lines in the plane Line E2d L1, L2 represented by the equations

a1x+ b1y + c1 = 0,
a2x+ b2y + c2 = 0
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is given by

x = +

b1 c1
b2 c2

a1 b1
a2 b2

, y = −

a1 c1
a2 c2

a1 b1
a2 b2

.

Membership of Intersection Functions

The choice of class membership of the functions for point equality and for the
orientation of three points, or the predicates in the Euclidean plane, was not
discussed in Chapter 1 and indeed there will be no significant repercussions
whether these functions are chosen as member functions in Point E2d or as
nonmember functions. Still, we ponder this issue along with the corresponding
one for intersection functions. Should functions for computing intersections be
member functions in Segment E2d? Should they (also) be member functions
in Line E2d?

The repercussions from this decision will little affect the flavor of the li-
brary (nor would we regret very much making one choice or another). We still
of course would like to choose the best of the following three design options.

1. The functions are member functions.

2. Predicate functions are static functions in some class Predicate and the in-
tersection functions are static functions in another class Intersection.

3. The functions are nonmember functions.

Of these three options, the first one is perhaps the one we would be most prone
to regret. To see why, consider that handling the intersection of a segment and
a line, say, would lead to the following options.

a. Duplicate the intersection code in both classes.

b. Write the intersection function in only one of the two classes.

c. Make the intersection function a member of one class and write a member
function in the other class that delegates to the first.

Option a makes the library a maintenance headache; option b puts the burden
on the client to remember the class in which each function is defined, and
option c deceives the client into thinking that the two functions are equally
efficient. It is sensible then to choose not to define predicates and intersection
functions as member functions.

Encapsulating intersection functions as static members would appear to be
a cleaner design than simply using nonmember functions, yet the latter option
does not lead to any difficulties. Overloading safely takes care of the mul-
titude of intersection functions that will be defined (for both Euclidean and
non-Euclidean geometries)—and hence that is the design chosen here.
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Return Type of Intersection Functions and Segment Intersections

A more interesting design decision is encountered when writing a routine for
the intersection of two segments. Choosing the type of the return object given
a signature such as the following will impact both the efficiency as well as the
flavor of the library.

class Intersection E2d {
static returnObject intersect(

const Segment E2d& s1,
const Segment E2d& s2);

...
};

The two line segments s1 and s2 can be in one of three configurations.
There may be no intersection; the two segments may intersect at a single point
(possibly coinciding with an endpoint of one or both segments); or the two
segments may lie on the same carrying line and have an overlap, in which case
they would intersect at an infinite number of points: a segment.

no
intersection

single
point

segment

Since the type of the object returned may vary, there are a few options for
handling the return type:

• Return a flag identifying the object type.

• Introduce an abstract base class (called perhaps Object E2d for an object
in the plane) in the class hierarchy and derive the classes Null E2d (for
no intersection), Point E2d, and Segment E2d from Object E2d. The
intersection function would return a pointer to Object E2d and the object
pointed to would determine the result of the intersection.

The segment intersection routine is likely to be called often and so we have
the following constraints:

1. The code should handle special cases (e.g., one of the two segments is
vertical) as easily as possible.

2. The number of floating point operations should be minimized.

The two constraints are satisfied by determining the intersection using the fol-
lowing four turns:

TURN s2s = s1.turn(s2.source());
TURN s2t = s1.turn(s2.target());
TURN s1s = s2.turn(s1.source());
TURN s1t = s2.turn(s1.target());

If the four predicates suggest that the two segments intersect in their inte-
rior, the problem reduces to finding the point of intersection of two lines.

Intersection of Directions

Another intersection problem is sometimes needed. Consider that we have an
observer O located at a vertex of a triangle and that we wish to determine
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whether a point is visible by the observer. The subset of the plane bounded by
the two edges adjacent to the vertex at O is defined as invisible—by imagining
perhaps that the triangle models a wall or some such obstacle. To determine
that a point P1 is visible whereas a point P2 is invisible, one needs to determine
whether the directions defined by

−−→
OP1 and

−−→
OP2 lie between the two directions

defined by the edges of the triangle.

O

P1

P2

Such computations in the space of directions rightly fall under the geome-
try of the circle—or the one-dimensional spherical geometry S 1 discussed in
Chapter 8. The purpose from introducing it at this stage is to suggest that it
would indeed be possible to solve such a question adequately in the Euclidean
plane, but that a far better approach is to define spherical geometric objects,
test that their behavior is as we expect, and then incorporate the predicates
defined in that geometry in a system.

5.3 Clipping or Splitting a Segment

The distinction between splitting and clipping is the following. We say that a
geometric object is being clipped if one or more portions are eventually dis-
carded, whereas we say that it is being split if all fragments are returned by the
function. One may, for instance, split by a line or clip by either a halfspace or
a viewport. Much of what follows applies directly to 3D.

splitting
line

clipping
region

Halfspace Clipping of Segment

An oriented line partitions the plane into three sets of points: those on its left,
those on its right, and the points lying on the line. These cases arise when the
sign of a determinant is positive, negative, or zero, respectively (§ 2.2). We use
the turn predicate and the enumeration Oriented side mentioned in § 2.2.

The following function evaluates the side of the splitting line on which
each endpoint of a segment lies. The intersection point is determined if the
endpoints of the segment lie on the opposite side of the line. The returned
segment maintains the same orientation as the input segment.

bool
positive half space clip(

const Line E2d & splitting line,
Segment E2d & my segment)

// return the regularized portion of my segment lying
// in the closed positive (left) halfspace of splitting line
{

Oriented side source side = oriented side(
splitting line, my segment.source() );

Oriented side target side = oriented side(
splitting line, my segment.target() );

if(
source side != ON NEGATIVE SIDE &&
target side != ON NEGATIVE SIDE)

return true; // no clipping needed: segment is entirely inside
else if(

(source side == ON POSITIVE SIDE &&
target side == ON NEGATIVE SIDE) ||

(source side == ON NEGATIVE SIDE &&
target side == ON POSITIVE SIDE))
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{
Point E2d intersectionPoint = intersection(splitting line, my segment);
if(source side == ON POSITIVE SIDE)

my segment = Segment E2d(my segment.source(), intersectionPoint);
else if(target side == ON POSITIVE SIDE)

my segment = Segment E2d(intersectionPoint, my segment.target());
return true;

}
else

// my segment is ON NEGATIVE SIDE, possibly with (at most)
// one endpoint ON ORIENTED BOUNDARY
return false;

}

All possible positions of the segment endpoints with respect to the splitting
line are straightforward, but the two input cases on the right of Figure 5.1 merit
an explanation. We assume that we are only interested in a returned segment. If
the intersection of the input segment with the halfplane results in a point, that
point is discarded. If the segment coincides with the boundary of the halfplane,
however, the segment is returned intact.

Figure 5.1
Halfspace clipping of a segment

Line Splitting of Segments

Even though segment splitting is a simple exercise, it arises with sufficient
frequency to merit inspecting the source code. In the preceding case, the
Boolean flag returned by positive half space clip signals whether a fragment
remains inside the clipping halfspace. The function split returns instead two
flags positive side flag and negative side flag to give two such signals for ei-
ther side of the splitting line.

void
split(

const Segment E2d & my segment,
const Line E2d & splitting line,
bool & positive side flag, // is there a positive side?
Segment E2d & positive side,
bool & negative side flag, // is there a negative side?
Segment E2d & negative side)

{
Oriented side source side = oriented side( splitting line, my segment.source() );
Oriented side target side = oriented side( splitting line, my segment.target() );
if(

source side != ON NEGATIVE SIDE &&
target side != ON NEGATIVE SIDE)

{
positive side flag = true;
positive side = my segment;
negative side flag = false;
// negative side is not modified
return;

}
else if(

source side != ON POSITIVE SIDE &&
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target side != ON POSITIVE SIDE)
{

positive side flag = false;
// positive side is not modified
negative side flag = true;
negative side = my segment;
return;

}
else if(

source side == ON POSITIVE SIDE &&
target side == ON NEGATIVE SIDE)

{
Point E2d intersectionPoint = intersection(splitting line, my segment);
positive side flag = true;
positive side = Segment E2d(my segment.source(), intersectionPoint);
negative side flag = true;
negative side = Segment E2d(intersectionPoint, my segment.target());

}
else if(

source side == ON NEGATIVE SIDE &&
target side == ON POSITIVE SIDE)

{
Point E2d intersectionPoint = intersection(splitting line, my segment);
positive side flag = true;
positive side = Segment E2d(intersectionPoint, my segment.target());
negative side flag = true;
negative side = Segment E2d(my segment.source(), intersectionPoint);

}
else

assert(false); // we shouldn’t be here
}

The final assertion will never evaluate to false. It prevents compilers that
do not observe that the preceding four conditions are exhaustive within the
nine options from issuing a warning.

Viewport Clipping of Segments

Performing line rasterization, or finding a sampled representation of a line (dis-
cussed in Chapter 19), requires that the line be wholly inside the viewport in
question. Thus, viewport clipping would precede line rasterization.

Viewport line clipping could be performed easily by repeatedly invoking
halfspace line clipping and discarding the portions of the line that lie outside
the four halfspaces whose intersection forms the viewport. If this approach
is adopted, the best one would hope for is that unnecessary intersections are
never computed, but since the problem is symmetrical with respect to the four
bounding lines, there is no way in general to guarantee that the optimal number
of intersections is found.

Computing the intersection of a segment and an arbitrary line is more
costly than determining the side of the line on which the two endpoints of
the segment lie. But determining the side of an axis-parallel line on which a
point lies is yet simpler; a single coordinate comparison suffices. It is possible
to take advantage of this efficiency by identifying the segments that lie wholly
on the right of one of the four bounding lines. In that case no fragments remain
inside the viewport.

Consider determining a four-bit signature for each point as a concise way
to capture the side of each bounding line on which the point lies. A point inside
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the viewport would have the signature LLLL to identify that it is on the left of
each of the four lines. If both endpoints have this signature, the segment is
inside the viewport [73].

E
N

W
S

ENWS

L L LL
After computing the signature of the two endpoints of a segment, corre-

sponding bits in the signature are compared. If the two bits in any position are
both R, the segment is known to lie on one side of one line and it is discarded.
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N

W
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LLLL

LRLL

LLLR

RLLL

RRLLLRRL

LLRL

LLRR RLLR

If the segment is neither wholly inside nor to one side of one bounding line,
it is incrementally clipped by the four halfplanes as seen in § 5.3.

Traditionally in computer graphics segment clipping is entangled with
operations in a given geometry [14]. One of the advantages of defining non-
Euclidean geometries is that the two issues can be kept separate—both con-
ceptually and at the system design level. This isolation makes it simple to
define a segment clipping or splitting function that operates without knowing
the underlying geometry. Clipping or splitting would proceed in the same way
regardless whether the geometry is spherical (Chapter 9), oriented projective
(Chapter 15), or Euclidean (this chapter).

Another intersection problem—determining whether a polygon intersects
a point (or whether the point is inside the polygon)—arises frequently in com-
puter graphics and is delayed to § 20.2 and 20.3.

5.4 Clipping or Splitting a Polygon

Because the constraints for designing a polygon class are more varied than
those for designing the planar geometric classes discussed in Chapter 1, it is
more difficult to argue for a canonical design. A system may even do with-
out a polygon class and simply use an array of points instead. In any case the
following clipping and intersection problems will arise in the context of bound-
ary representations for 3D objects discussed in Chapter 26 and the particular
representation used will dictate the design constraints.

The discussion that follows assumes a class for a polygon in E 2 such as
that sketched in class Polygon E2d. As with segments, intersection problems
involving polygons in space are entirely analogous.

class Polygon E2d {
vector<Point E2d> points;

public:
Polygon E2d(const vector<Point E2d> points) : points( points) {}
...

};

Halfspace Clipping of Polygons

Clipping can be performed by iterating over the segments bounding the poly-
gon and incrementally generating the fragment inside the halfspace. The image
that one should have is that of a pen tracing the boundary of the polygon. The
interesting instants of the motion of the pen are those events when it changes
direction (passing through a polygon vertex) and those when it intersects the
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boundary of the halfspace. The events could be handled when the pen is ei-
ther at the beginning or at the end of each segment bounding the polygon.
Adopting the latter is customary, which gives rise to the four cases illustrated
in Figure 5.2.

• If both the source and the target of the segment lie inside the halfspace,
the target is copied to the clipped polygon’s vertices.

• If the source is inside, but the target is outside, the point of intersection
with the boundary is copied.

• If both endpoints are outside, no action is taken.

• If the source is outside and the target is inside, both the intersection and
the target are copied—in that order.

Figure 5.2
Cases for halfspace

clipping of a polygon

This procedure is correct if the input polygon is convex. It is also correct
if the input polygon is concave, but its boundary intersects the line bounding
the halfspace only twice. If there are four or more intersections, the output
polygon will no longer be simple, but will self-intersect: Some vertices will
coincide with edges other than those to which they are adjacent. Whether
such an output is adequate depends on how the set of points in the polygon
is defined. If it is defined to include the points on its boundary, some points
will be incorrectly determined to be in the intersection of the halfspace and
the polygon. Still, rasterization algorithms handle the “degeneracy” of such
polygons correctly (see Chapter 20). If the polygon is being clipped only as
a preparation step prior to rasterization, the potential for degeneracy may be
safely ignored. If degeneracy cannot be tolerated, a constraint may be imposed
that the input polygon be convex. In the figure, the vertices are offset from the
edge for illustration.

Line Splitting of Polygons

Splitting a polygon by a plane in 3D is often needed in graphical systems (see
Chapter 28). The 3D problem can be studied by looking at its 2D version,
splitting a 2D polygon by a line. The 2D problem is itself no harder than
halfspace polygon clipping. One merely needs to duplicate the events and the
output list of points to generate the fragment lying on the right (or negative
halfspace) of the splitting line.

If degeneracy is a crucial issue or if the polygon is described by its bound-
ing set of oriented lines, not its vertices, to guarantee that the algebraic degree
(§ 6.4) of its vertices remains minimal, then an alternative treatment discussed
in § 28.4 is needed.
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Viewport Clipping of Polygons

The Sutherland–Hodgman viewport polygon clipping algorithm discussed next
is also a variation on halfspace polygon clipping [107]. The problem is to
compute the fragment of a polygon that lies inside a viewport. As illustrated
in Figure 5.3, the input polygon is passed through four processing stages, one
for each of the lines bounding the viewport, and the output from one stage is
forwarded to the next. The output of the fourth stage is the desired viewport
clipped polygon.

East-
Halfspace
Clipping

North-
Halfspace
Clipping

West-
Halfspace
Clipping

South-
Halfspace
Clipping

Input
Polygon

Output
Polygon

Figure 5.3
Viewport clipping of a polygon

5.5 Exercises

5.1 How many floating point additions, subtractions, multiplications, and
divisions are needed to find the intersection point of two nonparallel
lines? Assume that the system in question anticipates performing a great
deal of such intersection computations and thus attempts to cache as
much as possible in advance.

5.2 Were you convinced that the algorithm discussed in § 5.3 is indeed faster
than simply calling a viewport line clipping routine four times? Write
a program that determines the time ratio gained when both methods are
used for a set of random lines lying in the square [0..1] × [0..1]. Does
the ratio observed change when the viewport is either larger than the unit
square or significantly smaller?

5.3 Rubber banding user interfaces make it possible to manipulate a (geo-
metric) figure and interactively observe what the final figure would look
like before committing to it. Modify the start-up code labeled “clip-
polygon” accompanying this chapter, which makes it possible to draw
a polygon using a rubber-banding interface, to implement Sutherland–
Hodgman’s viewport polygon clipping algorithm.

5.4 Modify the start-up code labeled “clip-polygon” to implement the algo-
rithm for viewport clipping of segments discussed in § 5.3. Modify the
rubber banding so that it works for segments, not polygons, and so that
segments are not erased after they are clipped.

5.5 Solve Exercise 5.3, paying special attention to properly handle the cases
when vertices lie on one of the lines bounding the viewport. Your im-
plementation should make it convenient to enter interactively a polygon
with such vertices by snapping an input vertex to the nearest grid point
and by setting the viewport such that it coincides with grid points.
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5.6 Solve Exercise 5.4, paying special attention to the coincidence of a
segment with the viewport by implementing snapping as discussed in
Exercise 5.5.
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6 Genericity in Geometric Computing

By choosing a type such as double to represent the coordinates of a point, the
Point class and all accompanying classes are forever sealed at that precision.
Yet another application may need to use an identical set of classes at a different
precision, perhaps float, long double, or a rational number type from the GMP
library such as mpq class. This chapter discusses how the genericity of C++
can be used to design classes that delay the decision of the number type used
for coordinates. Such a delay increases the chance that multiple systems could
be developed based on the same set of foundational geometric classes.

It is best to read Chapters 6 and 7 simultaneously, perhaps by reading either
of the two chapters before and after the other.

6.1 A Generic Class for a Point

A main tenet of good design is to delay decisions for as long as possible. This
must in particular be the case when designing a geometric library. The type
double was earlier selected as the basis for representing the coordinates of a
point in 2D or in 3D, but the C++ language makes it equally easy to delay
that selection until the class in question needs to be used. We say in this case
that not one, but two instantiations take place. Whereas formerly we would
instantiate an object from a class, we would now first instantiate a class from a
parameterized class and then instantiate an object from the resulting (concrete)
class. The code would look as follows.

template<typename NT>
class Point E2 {
private:

NT x, y;
public:

Point E2( NT x, NT y )
: x(x), y(y) {}

...
};

...
typedef Point E2<double> Point E2d;
typedef Point E2<float> Point E2f;
Point E2d P;
Point E2f Q;
...

The last lines above instantiate two distinct classes for a point in two di-
mensions and instantiate two objects from these two classes. The class in-
stantiations can be documented visually using the dashed lines in the figure.

Point E2
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do
ub

le

Point E2 double Point E2 float
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But since C++ supports operator overloading, the number type used to in-
stantiate a class for a point in E 2 is not restricted to primitive number types.
One can also design one’s own number type and use that type in the instantia-
tion, just so long as the operations used in the library in E 2 are implemented
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for one’s new types. As will be discussed in Chapter 7, one of the useful
number types is to use the set of rational numbers Q. One can write the two
instantiations below, themselves based on a number type provided by a library
(GMP in this case):
class mpq class {

mpz class numerator;
mpz class denominator;
...

};
...
typedef Point E2<mpq class> Point E2q;
Point E2q R;
...

The use of an object of type mpz class for the components of mpq class
above captures an integer of arbitrary size (subject to available memory). In
its most simple incarnation a number for an arbitrarily large integer maintains
however many digits are needed in a string. It is capable of computing elemen-
tary arithmetic and comparison operators on its internal representation. This
flexibility in instantiating classes with various underlying number types (float,
double, rational numbers, etc.) is convenient when developing a geometric
system that needs to perform computations using various precisions.

But how do we know, when starting the design of a system, whether float-
ing point numbers are adequate? The answer is sometimes easy. It is clear
that interactive computer games, or systems that need to run in real time in
general, cannot afford to use data types not provided by the hardware. This
restricts the usable data types to int, long, float, and/or double. It is also clear
that systems that perform Boolean operations on polygons or solids, such as
the ones discussed in Chapter 28, will need to use an exact number type. In
general, however, this is an important decision that needs to be made for each
individual system. Genericity is a powerful device at our disposal to attempt
to delay the choice of number type as long as possible, but to generate one
executable or program, the various compromises have to be weighed and the
decision has to be made.

6.2 A Scalar Type

We saw in § 1.2 that an operation such as multiplying a vector by a scalar
can be captured by C++’s operator overloading. It suffices then for the client
programmer to know that the geometric classes are implemented, say, using
the built-in type double. Now that we delay the decision of the number type
and let client programmers make the choice, it would be inelegant to expect
them to use explicitly the double type as the scalar type; a decision to move
from double to float (for space considerations) or to rationals (for precision)
should ideally be made in just one line of code. The C++ idiom of using type
aliasing via typedef is adequate. Another option is to define a wrapper class
for the number type. Such a wrapper class [64] will also conveniently make it
possible to overload operators symmetrically as member functions.
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template<typename NT>

class Scalar
{

NT scalar;

friend
Vector E3<NT> operator∗(

const Vector E3<NT>& v,
const Scalar<NT>& s);

...
};

template<typename NT>

class Vector E3
{

NT x, y, z;

friend
Vector E3<NT> operator∗(

const Vector E3<NT>& v,
const Scalar<NT>& s);

...
};

template<typename NT>

Vector E3<NT>

operator∗(const Vector E3<NT>& v, const Scalar<NT>& s)
{

return Vector E3<NT>(v.x ∗ s, v.y ∗ s, v.z ∗ s);
}

template<typename NT>

Vector E3<NT>

operator∗(const Scalar<NT>& s, const Vector E3<NT>& v)
{

return v ∗ s;
}

An alternative, less heavy-handed approach than the one above is possible.
One may avoid defining a scalar class and rely instead on a suitable typedef.

typedef double NT;

The disadvantage of this approach is that C++’s type system would not pre-
vent client programmers from declaring scalars using double rather than NT,
which would make the move to float significantly harder since the statements
that depend on double in a different context would need to be identified and
isolated. The developer of foundation geometric classes should emphasize that
the adoption of a “heavy-handed approach” does not indicate a lack of confi-
dence in the abilities of the client programmer, but that the systematic transfer
of every conceivable error to a compile-time error is a desirable objective even
if the two programmers swapped roles.

Yet a third approach, invisible from the client side, is for a vector object to
consist of scalar objects.

template<typename NT>

class Vector E3
{

Scalar<NT> x, y, z;

...
};
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Even though doing so is cleaner in theory, it unnecessarily introduces ad-
ditional complexity. It could be used after comparing the assembly language
code generated to the one generated by the first approach and confirming that
no run-time penalty would be incurred.

A class Scalar is seldom needed in practice. The need for it arises only
when developers have not yet decided whether the code they are writing will
become library code or concrete code. The decision to write a generic geo-
metric system rather than a concrete one is an all-or-nothing decision. Just
as introducing const-correctness into a C++ system results in repercussions
throughout the system, so does introducing genericity into a system result in a
requirement for all classes and functions in the system to be made generic as
well. Also, because of implicit type conversions, designers and programmers
need to be careful about how subtle the resulting computation can be—one
must ensure that implicit conversions are either eliminated or carefully main-
tained.

6.3 Approach to Choosing the Number Type

At this time there is no silver bullet to determine whether to sacrifice effi-
ciency and use an exact number type. A simple rule of thumb is to consider
the compromise between speed and accuracy. If the system requirements sug-
gest speed, then we have to sacrifice accuracy, and vice versa. The answer is
of course easy if neither is required, but it is more often the case that both are.

It is more often the case that one can determine at the outset which number
types would not be adequate. For example:

• If the intermediate computations will end up affecting the final result
combinatorially (e.g., insert an edge in a graph if this point is on the
boundary of two polygons), then an exact number type needs to be
adopted. If the intermediate computations will only affect the final result
quantitatively, then an inaccurate number type such as the floating point
types provided by the hardware is adequate.

• Since the size of arbitrary-precision rationals expands on demand, the
maximum as well as the average depth of the expression trees used to
evaluate predicates will suggest whether a rational number type is ap-
propriate. The trouble is that the time taken by an elementary operation
(such as addition or multiplication) is no longer constant as when a prim-
itive number type is abandoned, but would depend on the size of the two
operands.

6.4 Algebraic Degree

As happens so often, the geometric problem can already be investigated by
looking at one dimension. We can even ignore a geometric interpretation
and consider only an arthmetic expression. The expression is parsed by the
compiler to generate the machine equivalent to the human readable form. For
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example, if the expression 2+3×4 is parsed into a tree, the binary multiplica-
tion operator will have two children, 3 and 4, and the binary addition operator
will have two children, 2 and the result of the multiplication operator. In a geo-
metric system one can argue that the quality of an algorithm can be evaluated
based on the maximum depth of the predicate expressions [18, 3].

+
×

3 4
2

In a geometric setting consider a system that uses the points P1 . . . P4 and
suppose that we choose rational numbers as the number type to represent the
points. Points marked with a circle are read as input, whereas those marked
with a bullet (P1 . . . P4) are constructed. P1 is the intersection of two seg-
ments. P2 lies at the intersection of two segments with P1 defining the end-
point of one of the segments, and so on.

P1

P2 P3

P4

Just as we can talk about the algebraic degree of a polynomial, we can also
talk about the algebraic degree of a point. Points read from the input have
degree 0, P1 has degree 1, P2 has degree 2, etc. If the coordinates of the points
are represented by rational numbers and if all input points are provided using x-
and y-coordinates defined by numerators and denominators such that no more
than a fixed number of bits are used to define each, then the denominator of Pj
will in general need more bits than the denominator of Pi for i < j. A system
may choose to calculate the greatest common divisor of the numerator and
the denominator after each intersection computation and simplify the fraction
(to reduce the number of bits) by dividing the two numbers by the GCD, but
doing so will consume time and will, in general, not reduce the size of the
numerator and denominator. No recipe is known to determine how often one
should invoke a GCD routine. Various frequencies should be attempted and
the program profiled to determine which one yields a suitable time and space
profile.

Regardless, a subset of simplifications will reveal that the numerator and
the denominator are relatively prime and that there is then no avoiding the
increase of the size of the description of points in each successive generation.
It is for this reason that it is crucial to consider carefully whether new points
are being constructed from other points with the smallest “generation”—or
that they have a low algebraic degree. Maintaining a small algebraic degree
ensures that both the time and the storage the system needs will be minimized,
but also, if only floating point variables are used, ensures that the chance of
“corruption” of the lowest order bits, and the ones that potentially determine
the outcome of predicates, remains minimized.

This theme is the topic of Chapter 7, but lest this issue appear to be of mere
theoretical interest, an example is warranted. Consider clipping a segment
AB in the plane by the two positive (i.e., left) halfspaces of CD and EF .
In theory the resulting clipped segment does not depend on the order of the
two clipping operations. The code below uses the type float to compute the
final intersection point directly (Gd) by intersecting AB and EF , and also
computes the ostensibly identical point indirectly (Gi) by first computing AH
then intersecting AH and EF .

A

B

C

D

E

G
H

F

int main()
{

const Point E2f A(2,2), B(9,5);
const Point E2f C(8,2), D(6,5);
const Point E2f E(4,1), F(5,6);
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const Segment E2f AB(A,B), CD(C,D), EF(E,F);

const Point E2f Gd = intersection of lines(AB, EF);
const Point E2f H = intersection of lines(AB, CD);

const Segment E2f AH(A,H);
const Point E2f Gi = intersection of lines(AH, EF);

// assert( Gd == Gi ); // fails

print( Gd.x() );
print( Gi.x() );

print( Gd.y() );
print( Gi.y() );

}

After finding that the coordinates differ, we print the sign bit, the exponent,
and the mantissa of the two x-coordinates then those of the y-coordinates (see
§ 7.5).

0 10000001 00011010000000000000000
0 10000001 00011010000000000000001
0 10000000 10000100000000000000000
0 10000000 10000100000000000000000

And so we see that the direct computation of the x-coordinate leads to a man-
tissa with a long trail of zeros, whereas the indirect computation leads to an
ending least-significant bit of 1. This single-bit difference suffices for the
equality operator to conclude that the two points are not equal. Performing
the same computation using a combination of indirect steps only reduces the
quality of the resulting floating point coordinates.

6.5 Repercussions from Changing the Number Type

Building a geometric system based on a definition for a point such as the one
used above

template<typename NT> class Point E2

makes it easy to experiment with different number types before choosing one.
It is important to observe that in this case the repercussions resulting from
changing a single identifier are significant. The dependency tree for such a
system will show that changing a token in a (presumably single) file will force
a recompilation of all or most files. If one anticipates the need to change
number type during development—perhaps for comparison purposes—it can
be useful to anticipate generating and maintaining different object files and
different executables in different directory hierarchies. Switching the number
type would then not force a recompilation of the entire system.

The ability to delay one’s decisions concerning such basic details of a geo-
metric system is discussed again in Part III, where the choice between Carte-
sian and homogeneous coordinate representations can also be made after a
system has been designed and developed.
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6.6 Exercises

6.1 You may wish to look ahead at Chapter 7 before answering this question,
but you do not need to do so to tackle it.

Do floating point operations on your machine obey

a. transitivity (associativity) of addition,

b. transitivity (associativity) of multiplication,

c. and distributivity of multiplication over addition?

If you choose, for instance, three random floating point numbers a, b,
and c in the interval [0, 1), how likely is the equality a+ (b+ c) = (a+
b)+c to hold? Write a program that iterates a large number of times and
that selects random numbers to determine whether your floating point
processor is prone to failing each of these tests. If it does fail for the
type float, determine the rate of success.

6.2 Implement a class for a rational number starting from the following
code:

class Rational {
int numerator;
int denominator;
...

};

Determine the set of operators that must be overloaded on Rational for it
to be usable for geometric objects in Point E2.

6.3 Solve Exercise 6.2 and then add a (nonmember) function for comput-
ing the greatest common divisor of the numerator and the denominator.
Make it possible for the client of Rational to normalize the two numbers
by dividing by the GCD.

6.4 Complete Exercise 6.3 and then implement a system that generates line
segments as described in § 6.4 and determine how quickly the size of
the numerator and the denominator increases when the input points are
constrained to lie on an integer grid (with coordinates, say, in the range
0 · · · 255). Look ahead in Chapter 7 to see examples for generating ran-
dom points and segments. Does the depth of the expressions that your
code can handle increase significantly if you use long instead of int?

6.5 The three medians of a triangle should intersect in one point. Likewise
the three points of intersection of three lines with a fourth line should
be colinear. Yet one cannot rely on machine built-in types to make these
conclusions correctly. Read § 7.3 and confirm that your implementation
for a rational number in Exercise 6.2 does indeed make it possible to
make the conclusions reliably.
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6.6 After reading Chapter 7, devise an additional example for a computation
(in any dimension) that cannot be performed reliably if one instantiates

typedef Point E2<double> Point E2d;

but that is reliable if one instantiates instead geometric objects from a
rational number type:

typedef Point E2<Rational> Point E2q;
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7 Numerical Precision in Geometric Computing

Programmers in any discipline know that they cannot rely on floating points.
A comparison of two floating point numbers that ought to be equal will, in
general, not generate the answer expected. This problem is compounded when
implementing geometric systems. The objective of this chapter is to convince
the reader how flawed a geometric system that relies on floating point compu-
tation can become and to point to alternatives that do not succumb to numerical
problems. The problems range from a system crashing to its producing an in-
correct output. A system is said to be robust when it successfully completes its
computation for any input and produces a correct output.

This material in this chapter and that in Chapter 6 intertwine and should be
read concurrently.

7.1 One-Dimensional Analogue

After using floating point variables even briefly, programmers quickly discover
that they should not use a test such as the following:

float a = ..;
float b = ..;
if (a==b)
..

else
..

The trouble with such a construct is that the underlying machine will per-
form the comparison between two floating point variables by checking the
equality of every bit representing the variable, but after some nontrivial com-
putations, the likelihood that the two are identical at every bit is so slim that
the else part in this construct is almost surely going to be called many times
when the “then” part should be executed instead.

Calculator users are also accustomed to the lack of precision of floating
point numbers. On many such handheld machines, evaluating, say, (

√
5)2 will

not yield 5, but another number with a minuscule error.

7.2 The Importance of Precision

Minuscule sacrifices in precision are wholly adequate in most science and en-
gineering applications. In geometric computing the lack of precision can also
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frequently be tolerated, but the lack of precision is a bothersome source of
trouble if combinatorial information is going to be constructed from geometric
data. Intuitively, combinatorial information derived from geometric data (“do
these two points coincide?”) is far more brittle: A small change in the input
data generates a (qualitatively as well as quantitatively) different output. For
example, if a point lies on one of the segments defining the boundary of a tri-
angle, it is enough to move one of the vertices of the segment infinitesimally
for the result of the point-inside-a-triangle test to change from true to false.

A natural reaction to the previous argument is that such a difference is
likely inconsequential. A standard operation in computer graphics is scan con-
version—the generation of the points on a grid (or “pixels”) that are inside a
triangle (Chapter 20). The objective is to produce a raster, or pixelated, im-
age that conveys the shape of the triangle. If the pixels inside the triangle are
displayed in one color and the background is displayed in another, it would
indeed be inconsequential if one pixel on the grid is marked in black instead of
white or vice versa.

But consider a case where two triangles sharing an edge are displayed in,
for example, two shades of gray. If the common edge passes by a point on the
grid, it would be noticeable if this point is colored in the background color.
The problem is compounded in an animation of these two triangles in which
the four vertices defining the triangles are moving along trajectories in the
plane. Such flickering of pixel colors will be perceptible.

To ensure that the rasterization or the scan conversion of the interior of
each triangle in a moving mesh is correct, it suffices in this case to rasterize
the boundary segments consistently, by always starting, for instance, from the
endpoint with smaller y-coordinate. Since the rasterization algorithm is de-
terministic, the same outcome will be produced when the common segment is
rasterized with either of its adjacent triangles (see § 20.4).

Even if not implemented correctly, such flickering pixels would be distract-
ing and unaesthetic, but the problem can also become more serious. In their
various incarnations, the precision-based troubles we encounter have their ba-
sis in the inadvertent breaking of some geometric truth. The truth broken in
the previous example, for instance, is that all the points in the interior of the
quadrilateral of points are shaded in gray (on the assumption that the two non-
common vertices lie on opposite sides of the common edge). Precision-based
errors lead to the inadvertent breaking of some geometric theorem also when
the programmer of the geometric system is not even aware of the existence of
the theorem in question. The difficulty of the precision-based problems in their
general setting can be seen when we consider that two entirely distinct com-
putation paths A and B may lead in theory to a single point. Because the two
computation paths use different operations, the lowest-order bits representing
the floating point number will differ and a test for, say, whether the two points
coincide will fail (return false). How often the various floating point numbers
are prone to generating an incorrect outcome is the topic of the next section.

A

B
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7.3 Examples of Precision Difficulties

We look at synthetic ways of devising examples of geometric problems in the
plane that break some elementary theorem. We consider whether two points
that ought to coincide are indeed coincident, whether three points that ought to
be colinear are indeed so, and whether four points that ought to be cocircular
also are so.

The reason these examples are described early in this discussion is that
beginning designers of geometric systems will often argue that their systems
would work properly, or would be robust, if they are fed only nondegenerate
inputs—or inputs in which no two points are coincident, no three points are
colinear, and no four points are cocircular (or equivalent degeneracies in higher
dimensions). But it is impossible to guarantee in general that these conditions
are satisfied, because the two, three, or four points may have been generated
from entirely different computation paths and it is difficult or impossible to
determine that these objects ought to be coincident, colinear, or cocircular.

Two Coincident Points

The three medians in a triangle meet at a point, or are concurrent, but suppose
we compute the intersections of two different pairs of the three medians, would
the use of floating point arithmetic conclude that the two intersection points
have equal coordinates?

Whether the two points coincide depends both on the quality of the floating
point arithmetic and on the choice of the coordinates of the triangle. In an
attempt to evaluate the merit of floating point calculations on one machine, we
measure the success rate of such a test. Three random points are chosen at
random inside a square and the equality of the intersection points is evaluated.
This leads to the following code:
template<typename T>
int
find intersecting medians(int trials)
{

int non degenerate triangles = 0;
int medians meet at one point = 0;

while(trials) {

Point E2<T> P0, P1, P2;
set to random(P0);
set to random(P1);
set to random(P2);

if( oriented side(P0, P1, P2) != ON ORIENTED BOUNDARY ) {

non degenerate triangles++;

T half( 0.5 );
Point E2<T> median01 = affine combination(P0 , P1, half);
Point E2<T> median12 = affine combination(P1 , P2, half);
Point E2<T> median20 = affine combination(P2 , P0, half);

Line E2<T> L0( P0, median12 );
Line E2<T> L1( P1, median20 );
Line E2<T> L2( P2, median01 );
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Point E2<T> P01 = intersection(L0, L1);
Point E2<T> P12 = intersection(L1, L2);

if( P01 == P12 )
++medians meet at one point;

−−trials;
}

}
return medians meet at one point;

}

Type Size in bytes Smallest number Success
representable out of 1,000,000

float 4 1.17549× 10−38 78,176
double 8 2.22507× 10−308 145,570
long double 16 3.3621× 10−4932 145,831

Running the above code using double on one million points yielded a con-
firmation that medians meet at a point for just 14.5% of the random triangles.
One’s intuition might suggest that using lower precision would result in sub-
stantially less accuracy and higher precision more accuracy. That is the case
for float: (7.8%), but the advantage gained from doubling the number of bits
is insignificant. The type long double succeeds at nearly the same ratio as
double.

Still, a true skeptic would (justly) consider that the above example is con-
trived. If we know in advance that the intersections of distinct pairs of medians
should coincide, why would we want to trip, so to speak, the machine? It would
be, one could argue, simpler to compute the intersection of just one pair and
use the resulting point as the triangle median. The trouble is that geometry is
awash with theorems, some we are familiar with, some are obscure, but (prob-
ably) most are not even yet known. In this case the coincidence of the three
medians just happens to be a well-known theorem.

Three Colinear Points

Now consider that we create a line passing through two random and noncoin-
cident points and then generate three points on the line by intersecting it with
three lines that are not parallel to it. How often does floating point arithmetic
lead the program to conclude that the three points are indeed colinear? The fol-
lowing code, which closely emulates code in LEDA [67], generates the ratio:

template<typename NT>
int
colinear points(int trials)
{

int points are colinear = 0;
int i = trials;

while(i−−) {
Line E2<NT> L;
set to random<NT>(L);
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Line E2<NT> L0, L1, L2;
do { set to random<NT>(L0); } while(L.is parallel(L0));
do { set to random<NT>(L1); } while(L.is parallel(L1));
do { set to random<NT>(L2); } while(L.is parallel(L2));

Point E2<NT> P0 = intersection(L, L0);
Point E2<NT> P1 = intersection(L, L1);
Point E2<NT> P2 = intersection(L, L2);

if(oriented side(P0,P1,P2) == ON ORIENTED BOUNDARY)
++points are colinear;

}

return points are colinear;
}

Type Size in bytes Smallest number Success
representable out of 1,000,000

float 4 1.17549× 10−38 234,615
double 8 2.22507× 10−308 256,827
long double 16 3.3621× 10−4932 256,644

In other words, floating point produces an incorrect result at least three
times out of four!

Four Cocircular Points

To conclude, we consider generating quadruples of random points on the unit
circle and testing whether the four points are cocircular. Four random vectors
are generated and normalized. Interpreting the resulting vectors as points, we
determine how often the incircle predicate will conclude that the quadruples of
points are indeed cocircular. The code follows.
template<typename T>
int
cocircular points(int trials)
{

int points are cocircular = 0;
int i = trials;

while(i−−) {
vector<Vector E2<T> > V(4);
set to random(V[0]);

do {
set to random(V[1]);

} while(V[1] == V[0]);
do {

set to random(V[2]);
} while(V[2] == V[0] || V[2] == V[1]);
do {

set to random(V[3]);
} while(V[3] == V[0] || V[3] == V[1] || V[3] == V[2]);

vector<Point E2<T> > P(4);
for(int i=0;i<4;++i)

P[i] = Point E2<T>(0,0) + Direction E2<T>(V[i]);

if(inside circle(P[0], P[1], P[2], P[3]) == COCIRCULAR)
++points are cocircular;

}
return points are cocircular;

}
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Since double sqrt(double X) and float sqrtf(float X) are the only functions
available in the standard library, only these two types are tested and summa-
rized in the table below.

Type Size in bytes Smallest number Success
representable out of 1,000,000

float 4 1.17549× 10−38 11
double 8 2.22507× 10−308 0

7.4 A Visual Example

The above experiments make it clear that one should not rely on floating point
arithmetic. But since the floating point equality tests in the three experiments
succeed only if all 32, 64, or 128 bits resulting from the determinant compu-
tation are equal, one could argue that the tests are overly stringent and could
suspect that relying on floating point arithmetic would not be visually percepti-
ble. The following experiment illustrates that at some magnification level, the
lack of precision can make an image incorrect.

We generate a set of points with coordinates (1, y) for y ∈ [−1, 1]. We
calculate the reflection of each point from a given “center of interest” not lying
on the line x = 1, and then construct a line segment from each sample point
and its reflection. If we magnify the area around the center of interest (shown
as a circle), all lines should coincide. The adjacent figure shows a square
viewport of side 2× 10−15.

The example is of course contrived because if we wish to ensure the seg-
ments look coincident in a graphical application, we could draw two segments—
each passing by the point in question. The second-generation (reflected) set of
points could be avoided in this case, but there are many cases in which it is im-
possible to avoid increasing the generation level of geometric data. This issue,
the algebraic degree of geometric objects, was discussed in § 6.4.

7.5 Bit-Level Reliability of Floating Point Numbers

The Single-Precision Floating Point Type in IEEE 754

We examine how floating point numbers are encoded in the IEEE 754 stan-
dard [54]. A floating point number is represented using a sign bit, a base-2
exponent, and a base-2 mantissa—in that order. The exponent of a single-
precision float is encoded as an unsigned number offset by 127 (so one needs
to subtract 127 to obtain the actual exponent); the sign bit is set to true for
negative numbers; and the mantissa uses the remaining 23 bits of the 32 bits
allocated. The latter consists of 1 followed by a fractional part, but because
the integer part is always normalized and set to 1, that highest-order bit is not
stored.
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The code below reveals the structure of a single-precision floating point
number captured by the type float. Each float is cast to characters and the
latter’s bits are printed to mirror float’s structure.

void binary print(int n, char c)
{

cout << ((c & 0x80) ? 1 : 0);
if(n>=2) cout << ” ”;
cout << ((c & 0x40) ? 1 : 0)
<< ((c & 0x20) ? 1 : 0)
<< ((c & 0x10) ? 1 : 0)
<< ((c & 0x08) ? 1 : 0)
<< ((c & 0x04) ? 1 : 0)
<< ((c & 0x02) ? 1 : 0)
<< ((c & 0x01) ? 1 : 0);

}

void print(float x)
{

char ∗ix =
reinterpret cast<char∗>(&x);

int n = 4;
while(n−−)
binary print(n, ix[n]);
cout << endl;

}

Because all numbers below are of the form 1 × 2±i, the fractional part of
their mantissa is indeed zero, signaling that the mantissa is 1. The exponent of
1.0f, for example, is 127 since the exponent is 20 or 1.

int main()
{

float x;
x = 4.0f ; print(x);
x = 2.0f ; print(x);
x = 1.0f ; print(x);
x = 0.5f ; print(x);
x = 0.25f; print(x);
cout << endl;
x = − 0.25f; print(x);
x = − 0.5f ; print(x);
x = − 1.0f ; print(x);
x = − 2.0f ; print(x);
x = − 4.0f ; print(x);
cout << endl;

}

0 10000001 00000000000000000000000
0 10000000 00000000000000000000000
0 01111111 00000000000000000000000
0 01111110 00000000000000000000000
0 01111101 00000000000000000000000

1 01111101 00000000000000000000000
1 01111110 00000000000000000000000
1 01111111 00000000000000000000000
1 10000000 00000000000000000000000
1 10000001 00000000000000000000000

We confirm that the encoding of numbers of the form 1 + 2−i does indeed
have a single bit of decreasing order. The outcome confirms that the smallest
fraction that can be added to 1.0f without disappearing is 1/223; the bits of
1 + 1/224 are indistinguishable from those of 1.

Constructing Increasing Floats

We can now manually construct 16 consecutive four-byte sequences to obtain
an array of integers. Casting in the opposite direction from elements of the
array one bit confirms that the resulting floating point numbers are indeed in
strictly increasing order.
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x = 1.0625000f; print(x); // 1 + 1/16
x = 1.0312500f; print(x); // 1 + 1/32
x = 1.0156250f; print(x); // 1 + 1/64
x = 1.0078125f; print(x); // 1 + 1/128
...
x = 1.00000047683715820312f; print(x); // 1 + 1/2ˆ21
x = 1.00000023841857910156f; print(x); // 1 + 1/2ˆ22
x = 1.00000011920928955078f; print(x); // 1 + 1/2ˆ23
x = 1.00000005960464477539f; print(x); // 1 + 1/2ˆ24

0 01111111 00010000000000000000000
0 01111111 00001000000000000000000
0 01111111 00000100000000000000000
0 01111111 00000010000000000000000
...
0 01111111 00000000000000000000100
0 01111111 00000000000000000000010
0 01111111 00000000000000000000001
0 01111111 00000000000000000000000

int one bit[] =
{

0x3F800000,
0x3F800001,
0x3F800002,
0x3F800003,
0x3F800004,
0x3F800005,
0x3F800006,
0x3F800007,
0x3F800008,
0x3F800009,
0x3F80000a,
0x3F80000b,
0x3F80000c,
0x3F80000d,
0x3F80000e,
0x3F80000f

};

0 01111111 00000000000000000000000 1
0 01111111 00000000000000000000001 1.00000011920928955078125
0 01111111 00000000000000000000010 1.0000002384185791015625
0 01111111 00000000000000000000011 1.00000035762786865234375
0 01111111 00000000000000000000100 1.000000476837158203125
0 01111111 00000000000000000000101 1.00000059604644775390625
0 01111111 00000000000000000000110 1.0000007152557373046875
0 01111111 00000000000000000000111 1.00000083446502685546875
0 01111111 00000000000000000001000 1.00000095367431640625
0 01111111 00000000000000000001001 1.00000107288360595703125
0 01111111 00000000000000000001010 1.0000011920928955078125
0 01111111 00000000000000000001011 1.00000131130218505859375
0 01111111 00000000000000000001100 1.000001430511474609375
0 01111111 00000000000000000001101 1.00000154972076416015625
0 01111111 00000000000000000001110 1.0000016689300537109375
0 01111111 00000000000000000001111 1.00000178813934326171875

The Orientation Predicate Under Floats

We now evaluate the orientation predicate on three nearly colinear points and
use the floating point numbers thus constructed for the x- and y-coordinates
of the third point. The experiment will reveal how unpredictable geometric
computation using floating point numbers can be [57].

If the first two points P and Q are taken on the line x = y and the bits
of the two coordinates of the third point R are drawn from the table one bit,
we obtain a two-dimensional array of points with the diagonal aligned with the
line x = y. The orientation predicate should conclude that the points on the
diagonal are colinear with P and Q and that the set of points is cleanly split
into those on the right- and on the left-hand side of the line PQ.

P
Q

R

Invoking the orientation predicate on the three points (P,Q,R) whereR =
(1 + εx, 1 + εy)) should report a left turn if εx < εy , a right turn if εx > εy ,
and should conclude that the three points are colinear if εx = εy . These three
values are encoded in three shades of gray and the result displayed in a matrix
that mirrors a magnification of the discrete space of the type float. Depending
on the values of P and Q, the table of orientation flags varies. The correct
table is indeed generated if P = (−5,−5) and Q = (0, 0). If the two points
are instead (−5,−5) and (−2,−2), a few points on the left are signaled to be
on the right and vice versa. For the pair (−6,−6) and (−5,−5), some points
are signaled to be colinear even though they are not, a large region on the right
is flagged to be on the right, and each region is no longer even convex. The
last case shows that the increasing density of the sample points that are not
colinear but that may be flagged as such.
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(−5,−5), (0, 0) (−5,−5), (−2,−2) (−6,−6), (−5,−5) (−3,−3), (−2,−2)

As Exercise 7.9 suggests, readers can compile the program “orientation-
robustness” accompanying this text on their machines to seek tables even more
unusual than the ones shown above.

7.6 Solutions to Precision Problems

Different fields will adopt different solutions depending on the application at
hand.

The first and the third solutions below require that we abandon the assump-
tion that computation is performed on real numbers. In the first case, integer
arithmetic is used and in the third, either rational or algebraic numbers are
used. The first method is used predominantly in hardware implementations
of algorithms (such as the scan conversion of triangles) where the objectives
of speed and exactness must be simultaneously satisfied. The third solution,
exact arithmetic, is used in CAD and computational geometry applications. In
that case, making an incorrect decision could lead to a program producing an
incorrect result or crashing. The second method, epsilon geometry, is the one
adopted in computer graphics. It balances the need for speed with the need for
precision, but, as we shall see, it is very difficult to use that method to write
code that never produces incorrect results.

Using Integer Arithmetic

With integer arithmetic, we abandon many of the operations discussed in Chap-
ter 5. We will not attempt to implement, for instance, a function for the inter-
section of two line segments. This solution is sufficient for one important
application: rendering on the raster devices that are widely used currently as a
display technology.

Avoiding floating point arithmetic has the additional benefit of efficiency.
The operation of rasterizing, or scan converting, segments is performed so
often at the lower level of many rendering algorithms that improving the per-
formance of this one step would percolate to affect that of many others.

Chapter 19 discusses Sproull’s refactoring [102] of Bresenham’s classical
algorithm [21] as an example for how one may systematically redesign an al-
gorithm to rid it of floating point.
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Efficiency Through Epsilon Geometry

Epsilon geometry is a generalization to two and higher dimensions of the pro-
gramming idiom that was discussed at the beginning of this chapter and that
is widely used outside geometric applications. Programmers quickly observe
they should not write
float a = ...;
float b = ...;
if( a == b ) {

...
}

because the Boolean condition is very unlikely to evaluate to true. An easy
solution is to write
const float EPSILON = 1e−8;
float a = ...;
float b = ...;
if( fabs(a − b) < EPSILON ) {

...
}

The new comparison is favored over floating point equality on the premise that
two numbers that are “sufficiently close” should be considered identical. But
how should one determine the value of EPSILON, the maximum separation
between two floating point numbers before they are considered equal? Should
the comparison be relative to the size of a and b or remain in absolute terms?

There is unfortunately no firm foundation on which to base a geometric
system built on comparisons with an epsilon. Nevertheless, this approach
is widely adopted in real-time computer graphics and whenever efficiency is
more important than accuracy.

This is another motivation for writing generic geometric classes as dis-
cussed in Chapter 6 rather than writing concrete classes that seal the data type
to, say, double.

The decision to make coordinate comparisons based on some small epsilon
is too important to be left for scattered use throughout a system. If it is adopted,
it should be included in the design. The design would include a data type
Epsilon double that encapsulates the strategy for identifying points that are
sufficiently close. The use of generic classes makes it possible to choose easily
between Epsilon double and double until the last stages of an implementation.

If an epsilon is chosen in absolute terms (i.e., as a constant irrelevant of
the magnitude of the numbers being compared—surely an inadequate choice
in many cases), then the comparison operators would need to be defined for
the new number type.

0−ε ε︸︷︷︸
treat as 0

> 0< 0

static const double EPSILON = 1e−7;
class Epsilon double
{

double d;
public:

Epsilon double(double d = 0.0) : d(d) {}

bool operator==(const Epsilon double& d2) const
{ return (fabs(d2.d − d) < EPSILON); }
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bool operator!=(const Epsilon double& d2) const
{ return !operator==(d2); }

bool operator<(const Epsilon double& d2) const
{ return d − d2.d < −EPSILON; }
bool operator<=(const Epsilon double& d2) const
{ return d − d2.d <= −EPSILON; }
bool operator>(const Epsilon double& d2) const
{ return d − d2.d > EPSILON; }
bool operator>=(const Epsilon double& d2) const
{ return d − d2.d >= EPSILON; }
...

};

Notice that even though Epsilon double is based on the assumption that
two floating point numbers will only rarely coincide, we still need to aim to
a modicum of consistency by ensuring that the Boolean operators are defined
symmetrically for the new number type. Consistency can be confirmed by
simply including a test routine such as the following:
void test epsilon double()
{

Epsilon double a(2.0);
Epsilon double b(2.0 + EPSILON);

assert( (a < b) != (a == b) );
assert( (b > a) != (a == b) );

}

In this case we choose for the ±ε-interval surrounding a given number to be
open: a 6= a+ε. The alternative, assuming a closed interval, is equally suitable.

Achieving this level of symmetric predicates is as far as tests based on ep-
silon will allow. Transitivity of equality is clearly unattainable, which gives
one indication why systems based on epsilons breach basic properties of num-
bers.

Accuracy Through Rational Numbers

If the assumption that the countable set captured by floating point variables in
a machine is an adequate representation of real numbers is inherently flawed,
one may wonder whether it is necessary to use real numbers in the first place.
If algebraic numbers (which arise as a solution to an algebraic equation) appear
as part of the input of a problem, then our only options are either to use a float-
ing point approximation or to use manipulations on algebraic numbers. But in
yet many other cases, the input may be represented with rational numbers.

Often also few digits of precision are needed in the output of an algorithm.
The intermediate computations, on the other hand, can in general not be imple-
mented reliably using primitive data types. If the problem considered consists
of linear sets (the focus of this text), then implementing a rational number type
guarantees predicate accuracy. At the outset this appears to be simply a matter
of implementing a class Simple rational.
class Simple rational {

int numerator;
int denominator;
...

};




	

��

80 NUMERICAL PRECISION

But as is clear from Exercise 6.4, such an implementation would be in-
adequate. After multiple generation levels of geometric objects, the preci-
sion (32 bits in this case) available in any constant-sized number type will be
insufficient—even after normalizing the rational numbers used. The answer
lies in introducing a new class Rational that stores two integers of arbitrary
precision. As more precision is needed by a BigInteger object, additional stor-
age is allocated. The type mpq class mentioned earlier (§ 6.1) is an example
of such an extended-precision rational number.
class Rational {

BigInteger numerator;
BigInteger denominator;
...

};

Using rational numbers may result in a dramatic increase in execution time.
The use of floating point filters makes it possible to develop systems that are
both accurate and efficient [37, 90].

Yet, as discussed in § 29.8, filters are occasionally ineffective and restruc-
turing an algorithm so that its predicates are dependent via brief expressions
on the input data is needed. The BSP trees described in Chapters 28 and 29
differ from the classical presentation to attain such brief expressions.

Considerably more can be said about exact computation in particular and
robustness in general. The interested reader is referred to the expository pa-
pers [120, 52, 91] and the references therein.

7.7 Algebraic Vs. Synthetic Geometry

There are two fundamentally different ways for doing geometry: Synthetic
geometry is the art of constructing statements by building on a minimal set of
self-evident statements (axioms and postulates). Algebraic geometry, on the
other hand, is the art of solving geometric problems using algebraic manipula-
tion on (numerical) representations of these objects.

The former has its origin with Euclid’s development in about 300 B.C. of a
geometry, named today after him. The latter has its origins with the introduc-
tion of Cartesian coordinates by Fermat and by Descartes in 1637 [95] and the
introduction of homogeneous coordinates (see Chapter 12).

But synthetic geometry was not replaced by algebraic geometry. That the
two strategies for building geometry can not only coexist, but can complete
each other, was not understood in the early 19th century. A rivalry arose, for in-
stance, between Gergonne and Poncelet [19], the first as an advocate of analy-
sis and the second an advocate of synthesis. Looking at what we now know
in geometric computing would suggest that synthesis took the back seat—
computation is essentially analytic, but it is conceivable that the other face
of geometry will some day fully reveal itself. The main strategy for resolving
predicates today relies on their coordinates. Determining whether two points
are equal, for example, is reduced to a computation on their coordinates. This
is the best one can do if both points are read as input, but if one of the points
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is constructed from data that includes the other point, a proof may exist that
the two points ought to be equal. Effective ways for encoding known proofs
and for determining whether a proof of equality exists may one day make it
possible to skirt many of the numerical problems that currently plague imple-
mentations of geometric algorithms.

7.8 Documenting Degeneracies

If the details of handling the unlikely events, but the ones that do arise in
practice and that cause geometric software to fail, are so important, the reader
will wonder why these details are seldom reported as part of the description of
an algorithm in the literature. The trouble is that these details are unglamorous.
The algorithm developer will have doubtless spent many hours finding these
special cases, implementing them, debugging, and then finding that some more
have been missed. The developer who does not realize that reporting on such
an experience will save others who attempt the same task significant effort is
likely to assume that finding the special cases is merely a detail of debugging.

The crucial observation is that special cases should be documented as in-
trinsic parts of an algorithm. If they are, the test cases that the programmer
implementing the algorithm will write will in particular include these special
cases.

Many precision-rooted troubles that do not arise in the one-dimensional
version of a problem are a particular source of difficulty in higher dimensions.
The contrast between the computation of Boolean operations on regular sets in
one or higher dimensions (discussed in Chapter 30) is an example of the ease of
implementing the one-dimensional problem compared to higher dimensions.

Someone moving from traditional programming to geometric program-
ming who wishes to design and implement robust systems has to undergo a
basic shift in thinking. This shift was already outlined in Chapter 2; predicates
need to be designed to have ternary, not binary, outcomes, and the programmer
needs to design and implement algorithms always concerned about all three
possible outcomes at a geometry-based branching statement—even if most of-
ten only two cases will handle the three potential outcomes.

7.9 Exercises

7.1 Exercise 6.1 asked you to confirm whether several numerical problems
that appear not to be geometric would be handled correctly on your float-
ing point processor. Determine for each subproblem a geometric com-
putation that would resolve to an identical calculation and that would
thus fail if you concluded so in the numeric instance.

7.2 Write a program that generates a postscript file (see Appendix A) con-
firming the claim in § 7.4.

7.3 Implement a system for computing the convex hull of a set of points in
the plane [83] using double precision and generate a postscript drawing
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of the hull. How many (random) points can your implementation handle
before you notice errors in the convex hull?

7.4 Repeat the previous exercise for the Delaunay triangulation [63].

7.5 a. A simple polygon is one whose edges intersect only at vertices. De-
vise and implement a method for generating random simple poly-
gons of n vertices. Your implementation should make it possible
to generate either integer or floating point coordinates.

b. Read Chapters 20 and 22 and then implement a system for counting
the number of grid points inside a simple polygon using floating
point coordinates.

c. The area of a simple polygon whose vertices have integer coordi-
nates is 1

2b + c − 1, where b is the number of grid points that lie
on the boundary of the polygon and c is the number of grid points
inside the polygon. (For a proof of this equation due to Pick, see
Coxeter [27].) Implement a system that uses this formula as well
as your implementation for part b to compute the area of polygons
whose vertices have integer coordinates.

7.6 If the vertices of a simple polygon of n vertices are Pi(xi, yi), i =
0 · · ·n− 1, then the area of the polygon is given by

1
2

n−1∑
i=0

xiyi+1 − xi+1yi.

Indexing is done modulo n, so when i = n−1, i+1 = 0 [74]. Implement
a function that calculates the area of a simple polygon.

7.7 Implement Exercises 7.5 and 7.6. What is the ratio of success between
the floating point and the exact computations?

7.8 The program labeled “precision” accompanying this text is an interactive
version of the precision problems encountered in § 7.5 [57]. Experiment
with different input values and provide those that give the least reason-
able behavior for floating point arithmetic.

7.9 The figures in § 7.5 [57] were chosen among those generated by the pro-
gram “orientation-robustness” accompanying this text. Choose different
coordinates for the two constant points P and Q in an effort to generate
tables that show even more unusual behavior for floating point arithmetic
than the one documented earlier.

7.10 The tables shown in § 7.5 may seem to suggest that the behavior of
floating point is entirely chaotic. Determine whether that is the case
by generating a large set of images while gliding one of the two points
P and Q. Begin at the following excerpt from the program “orientation-
robustness” accompanying this text.
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for(float P = −10; P<= −1; P += 1.0)
for(float Q = P+1; Q <= 0; Q += 1.0)

float orientation robustness(
”psout/orientation−robustness”, P, P, Q, Q);

Use a utility to convert the resulting set of vector images to a raster repre-
sentation, and then use another utility to generate an animation showing
the result of the glide. Can you detect any pattern?

7.11 If consecutive vertices of a regular polygon (§ 26.3) are used to de-
fine a set of vectors, then the vectors should always sum to the zero
vector. Generate a large number of random-sized regular polygons of
n = 3 · · · 7 sides and determine how often such vectors sum to the zero
vector. Is the outcome for a square significantly better than that for a
triangle? Does the outcome change significantly if triangles take an ar-
bitrary orientation (rotation)? Does it for squares?
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Part II

Non-Euclidean Geometries
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8 Computational Spherical Geometry in One Dimension

Before studying spherical objects, we spend a moment looking at the objects
one can define on the circle. We assume that the circle in question is a unit
circle centered at the origin and that S 1 denotes the set of points on such a
canonical circle. What objects can one define for the geometry of the circle,
and what operations could be implemented on these objects? These are the
topics of this chapter. Note that we usually say a “sphere” in any dimension,
except for d = 1, for which we say “circle” [9].

8.1 A Point

We start by defining a class for a point on a circle Point S1. A library for
circular objects may be designed by building on the notion of a direction in
the Euclidean plane (§ 1.3). At the price of a little repetition, we choose here
to reduce the coupling between the two components, which in any case leads
to a clearer exposition and ensures that no level of indirection will remain in
compiled code. The outline of a class for a point in S 1 may look as follows:

P−→
d

template<typename NT>

class Point S1
{

NT x, y;
public:

Point S1() : x(1), y(0) {}
Point S1(const NT& x, const NT& y) : x(x), y(y) {}
Point S1(const Point E2<NT>& source, const Point E2<NT>& target)

: x(target.x() − source.x()), y(target.y() − source.y()) {}
...

};

The vector used to create the spherical point is not normalized, as doing so
limits the possible number types, makes subsequent equality tests less reliable
(Chapter 7), and unnecessarily wastes time. To determine whether two circu-
lar points are equal, we check that the two corresponding vectors are linearly
dependent and that their inner product is positive. This last condition is the
crucial one that distinguishes the geometry of S 1 from that of the projective
line P1 (§ 11.1).

bool operator==(const Point S1<NT>& p) const {
return (this == &p) ||

determinant( x, y, p. x, p. y) == 0 &&
inner product( x, y, p. x, p. y) > 0;

}
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8.2 Point Orientation

As discussed in § 2.5, a point in the Euclidean line E 1 divides the line into
a positive and a negative side. A sidedness predicate returns three values, to
signal the relative orientation of a query point.

A point in S 1 is somewhat trickier. At first sight it would appear that a point
does not divide S 1 into two halves—only one section results from cutting the
circle at a point. Yet as will become evident in § 28.3, it is natural to divide the
circle into positive and negative parts with respect to a point. For that the notion
of the antipode of a point is needed. The antipode of a point P with direction
−→
d is the point P ′ defined by the direction

−→
−d. The pair P and P ′ divide

the circle into two parts. The positive halfspace P+ is the open halfcircle
counterclockwise from P—containing the points Q and R in the figure—and
the negative halfspace P− is the clockwise halfcircle—containing the points
S and T .

P

Q

R

S

T

P+

P−

antipode of P

P ′

const Point S1<NT> antipode() const { return Point S1(− x, − y); }
Yet the point orientation predicate will not distinguish between P ′ and P ;

the third set in the classification of points in S 1 depending on their orientation
with respect to P consists of the set {P, P ′}. It is the responsibility of the
client software to subsequently test whether the query point is the antipode.
template<typename NT>

Oriented side
oriented side(

const Point S1<NT>& p1,
const Point S1<NT>& p2)

{
NT d = cross product( p1.get Direction E2(), p2.get Direction E2() );

return enum Oriented side(d);
}

One property that we expect from point orientation on the Euclidean line—
transitivity—is not satisfied for point orientation on S 1, for three points A, B,
and C may be ordered such that A ≤ B and B ≤ C, yet A ≤ C does not hold.
Point orientation remains antisymmetric. If A ≤ C does not hold, it must be
the case that C ≤ A does hold, but the lack of transitivity means that a set of
points in S 1 cannot be sorted in absolute terms, but only in relation to a given
point.

A
B

C

A ≤ B

B ≤ C
C ≤ A

8.3 A Segment

The next natural object to define is that of a circular segment. Since two distinct
circular points could define two segments on the circle, we may choose to add
a Boolean flag to identify which of the two segments is intended, but it is more
elegant to impose a counterclockwise orientation on the circle and to define the
segment as directed from a source to a target point.
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template<typename NT>

class Segment S1
{

Point S1<NT> source, target;
public:

Segment S1(
const Point S1<NT>& source = Point S1<NT>(1,0),
const Point S1<NT>& target = Point S1<NT>(0,1))

: source(source), target(target)
{}

Point S1<NT> source() const { return source; }
Point S1<NT> target() const { return target; }

};

Several options are possible in a library for objects in S 1. Can the source
and the target of a segment coincide? Can the source and target of a segment
be antipodal points? Can a segment be larger than half a circle? If the source
and target coincide, would the segment defined have degenerated to a single
point or to the full circle?

We leave it possible for a segment to have coincident endpoints; the seg-
ment then degenerates to a single point. We also leave it possible for the two
endpoints to be antipodal, a case we will need in Chapters 28 and 29. But to
simplify intersection operations, we disallow a segment from being larger than
half a circle.

Three operations may be anticipated: detecting whether a point is among
those defined by a segment, determining the intersection of two segments, and
interpolating between two points on the circle. The last operation would be
useful if one wishes, for instance, to animate a particle moving along a seg-
ment.

8.4 Point-Segment Intersection

Rather than return a Boolean flag identifying whether a point intersects a seg-
ment, it is equally easy to return three values; the point may be inside the
segment, outside, or on the boundary (coinciding with one of the endpoints).
If a point is in the positive halfspace of the source of a segment and in the
negative halfspace of the target, it is inside. If the query point coincides with
either segment endpoint, it lies on the boundary

P

Ssource

Starget

template<typename NT>

Set membership
classify(

const Segment S1<NT>& segment,
const Point S1<NT>& P)

{
const Point S1<NT>& source = segment.source();
const Point S1<NT>& target = segment.target();

Oriented side side of source = oriented side(source, P);
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Oriented side side of target = oriented side(target, P);

if(
side of source == ON POSITIVE SIDE &&
side of target == ON NEGATIVE SIDE )
return INSIDE SET;

else if(
side of source == ON ORIENTED BOUNDARY &&
inner product(source.x(), source.y(), P.x(), P.y()) > 0
||
side of target == ON ORIENTED BOUNDARY &&
inner product(target.x(), target.y(), P.x(), P.y()) > 0)

return ON SET BOUNDARY;
else

return OUTSIDE SET;
}

8.5 Segment Intersection and Interpolation

Intersecting two circular segments consists of making four containment tests.
If all four fail, the two segments do not intersect. The function return type is a
pair consisting of a Boolean flag in addition to the segment resulting from the
intersection
template<typename NT>

std::pair<bool,Segment S1<NT> >

intersection(
const Segment S1<NT>& seg1,
const Segment S1<NT>& seg2)

{
if(seg1.contains(seg2.source()) && seg1.contains(seg2.target()))

return std::make pair(true, seg2);
else if(seg2.contains(seg1.source()) && seg2.contains(seg1.target()))

return std::make pair(true, seg1);
else if(seg1.contains(seg2.source()) && seg2.contains(seg1.target()))

return std::make pair(
true, Segment S1<NT>(seg2.source(), seg1.target()));

else if(seg2.contains(seg1.source()) && seg1.contains(seg2.target()))
return std::make pair(

true, Segment S1<NT>(seg1.source(), seg2.target()));
else

return std::make pair(false, Segment S1<NT>());
}

s2
s1

s2
s1s2

s1

s2

s1

Consider that we wish to generate an animation of a spherical point along
a spherical segment. The point lies initially at the source of the segment and
reaches the target of the segment at the conclusion of the animation. We also
would like the speed of the point to be uniform; the rate with which the point
traverses angles at the center of the circle should be constant. Unlike intersec-
tion, writing a function to interpolate between two spherical points requires the
use of trigonometric functions.
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template<typename NT>

Point S1<NT>

interpolate(
const Point S1<NT>& P0,
const Point S1<NT>& P1,
const NT& t )

{
const NT zero(0.0);
const NT unity(1.0);

assert(zero <= t && t <= unity);

NT sourceAngle = atan2(NT(P0.y()), NT(P0.x()));
NT targetAngle = atan2(NT(P1.y()), NT(P1.x()));

if(targetAngle > sourceAngle) {
NT angle = sourceAngle ∗ (unity−t) + targetAngle ∗ (t);
return Point S1<NT>(std::cos(angle), std::sin(angle));

}
else {

NT angle =
(M PI + sourceAngle) ∗ (unity−t)
+ (targetAngle + M PI) ∗ (t);

return Point S1<NT>(−std::cos(angle), −std::sin(angle));
}

}
If the functions atan2, cos, and sin are defined through overloading for the

types float, double, and long double, the above definition would adequately
invoke the appropriate set of functions corresponding to the number type to
which interpolate is instantiated. If a different number type is used, an error
would be issued since the three trigonometric functions would not be resolved.
(An alternative, overloading three concrete definition for interpolate, would
cause the error to be issued when that function itself would not be resolved.)

One operation, splitting a segment by a point, is delayed to Chapter 28
when it will be needed to represent regular sets in S 1 and to perform Boolean
operations on such sets.

8.6 Exercises

8.1 The implementation of Point S1 (§ 8.1) could have stored an instance of
Direction E2 (§ 1.3).

template<typename NT>

class Point S1
{

Direction E2<NT> d;
...

};
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The class Point S1 would then act as a wrapper that delegates messages
it receives to the Direction E2 class.

Yet a system developed on such a foundation could be paying a price
for the extra level of indirection. Implement two prototype systems and
compare the assembly language generated by your compiler to deter-
mine what price, if any, would be paid by the indirection. Do the com-
piler’s various optimization stages have any effect?

8.2 The function interpolate defined in § 8.5 would be adequate if it is used
to visualize a moving particle, since spherical objects then need in any
case to be converted to a floating point type. But if the number type used
is a rational type (such as mpq class) and if the result of the interpola-
tion would be subsequently used for other than visualization, then the
function needs to be defined for the number type used.

Interpolation may be performed without having to use trigonometric
functions by determining a number of points that are sufficiently close to
the circle and performing linear interpolation between the closest two.

Sketch a design that would allow you to define interpolation in the first
quadrant on Gmpq by recursively dividing that quadrant by two until
there are 256 points on the interval [(1, 0), (0, 1)). Your design should
cache the generated points between invocations.

8.3 Implement a prototype for your solution to Exercise 8.2.
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9 Computational Spherical Geometry in Two Dimensions

Studying spherical geometry before classical (Chapter 11) and oriented (Chap-
ter 14) projective geometries provides considerable insight to these geometries.
Assigning coordinates to spherical objects also makes the assignment of homo-
geneous coordinates to projective objects more intuitive.

But spherical geometry is also interesting in its own right as many geome-
tric systems are implemented on the sphere. Such systems will most naturally
be implemented not using two spherical coordinates (latitude and longitude),
but by operating on vectors in Euclidean 3D space (Chapter 3). Systems us-
ing spherical geometry could indeed be implemented by operating on vectors
without abstracting the structure of the sphere, but such systems are inherently
flawed. The notions that need to be abstracted are repeatedly defined within the
system; the operations risk being multiply defined; and debugging the system
must proceed in an ad-hoc manner. These flaws are removed by encapsulating
objects and predicates in a software layer for spherical geometry, the topic of
this chapter.

At the time of this writing, the CGAL (see Chapter 18) kernel exclusively
contains Euclidean geometry objects, but an extension package for spherical
geometry that includes a number of algorithms not discussed here has been
designed and implemented [92] for LEDA [67].

9.1 Spherical Geometry Objects

A distinguishing characteristic of the four geometries (E 2, Chapter 1; S 2, this
chapter; P2, Chapter 11; and T 2, Chapter 14) is the number of points in which
two lines intersect. In Euclidean geometry two distinct lines intersect in a point
unless they are parallel; in spherical and oriented projective geometries two
distinct lines intersect in two points (but see § 9.5); and in projective geometry
two distinct lines intersect in one point.

As with the geometry of a circle, a point on the sphere, or a spherical
point, will be represented by a direction in three dimensions. If an observer
situated at a spherical point starts moving in an arbitrary direction on the sur-
face of the sphere, the path taken will eventually reach the starting point—and
so as far as the observer is concerned, the path taken is a straight line. Thus,

E 2 S 2

P2 T 2

either a “spherical line” or a “spherical circle” is an adequate name for such
an oriented path. The first considers the sphere as experienced by a minus-
cule creature walking on its surface; the second considers the line as seen by a
distant observer. Either name is adequate; here we use the latter.
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The analogy with the Euclidean plane goes further: just as an oriented line
in the Euclidean plane divides the plane to left and right halfplanes, the line on
the sphere also divides the sphere into left and right hemispheres.

A spherical circle is also the intersection of a plane passing by the center
of the sphere with the surface of the sphere. The resulting set of points and
circles can for convenience be thought to lie on a sphere of unit radius, but an
identical geometry would result if a sphere of an arbitrary radius is used.

Adopting oriented spherical circles means that the points on a given spher-
ical circle also define a second spherical circle with the opposite orientation.
An oriented plane will be used to construct a spherical circle and the right-
hand rule will apply: If the thumb of the right hand points to the normal of the
oriented plane defining the circle, the fingers are aligned with the orientation
of the circle.

9.2 A Spherical Point

It is tempting to parameterize a spherical point using two angles θ and φ that
measure longitude and latitude. After choosing two antipodal points as poles, a
“Greenwich line” can be declared and an equator deduced as the perpendicular
bisector of the two poles. But building a library for geometric components on
such a parameterization is flawed. One problem is that a discontinuity occurs
when an observer crosses the Greenwich line or passes by either pole. Another
is that rates of change of the coordinates for someone traveling on the surface
of the sphere will vary greatly. Perceived speeds near the poles are skewed
compared to those near the equator. Adopting a direction in Euclidean space
as the parameterization for a spherical point avoids these problems.

A spherical point is described by a direction
−→
d in E 3. The antipode of

this point is defined as the spherical point with direction −
−→
d . The classes

for spherical objects have the suffix S2 to identify them as lying on the two-
dimensional sphere.

O

−→
d

−
−→
d

template<typename NT>

class Point S2
{

NT x, y, z;
public:

Point S2() : x(1), y(0), z(0) {}
Point S2(const NT& x, const NT& y, const NT& z) : x(x), y(y), z(z) {}
Point S2(const Direction E3<NT>& D) : x(D.x()), y(D.y()), z(D.z()) {}
Point S2(const Point E3<NT>& source, const Point E3<NT>& target)

: x(target.x() − source.x()),
y(target.y() − source.y()),
z(target.z() − source.z())

{}

Direction E3<NT> get Direction E3() const {
return Direction E3<NT>( x, y, z);

}
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NT x() const { return x; }
NT y() const { return y; }
NT z() const { return z; }

const Point S2<NT> antipode() const { return Point S2(− x, − y, − z); }

Point S2 operator−() const { return antipode(); }
...

};

Equality of Two Spherical Points

As with directions in Euclidean 3D space (§ 3.2), here also two points repre-
sented by vectors −→v1 and −→v2 are equal if there exists a positive k such that
−→v1 = k−→v2 . Also as with directions in E 3, there is no need to normalize the
vectors before determining equality.

bool operator==(const Point S2<NT>& p) const {
return (this == &p) ||

are dependent( x, y, z, p. x, p. y, p. z) &&
inner product( x, y, z, p. x, p. y, p. z) > 0;

}

9.3 A Spherical Circle

Because we know that the oriented plane carrying a spherical circle must pass
by the origin, it would be wasteful to represent a spherical circle using an
oriented plane. Storing the normal to the plane suffices.

template<typename NT>

class Circle S2
{

NT x, y, z;
public:

Circle S2() : x(1), y(0), z(0) {}
Circle S2(const NT& x, const NT& y, const NT& z) : x(x), y(y), z(z) {}
...

};

−→
N

O

Determining the Spherical Circle Carrying Two Spherical Points

Two distinct and nonantipodal spherical points define a spherical circle. A
portion of the circle is traced by the shortest path on the sphere between the
two points. Reversing the order of the points defines a circle coincident with
the first, but with the opposite orientation.

template<typename T>

class Circle S2
{

...
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Circle S2(const Point S2<NT>& p1, const Point S2<NT>& p2)
{

cross product(
p1.x(), p1.y(), p1.z(),
p2.x(), p2.y(), p2.z(),
x, y, z);

}
};

Finding an Orthonormal Basis for a Spherical Circle

It is frequently useful to know two orthogonal points
−→
B1 and

−→
B2 on a given

spherical circle −→c . Parameterizing a point on a spherical circle, for instance,
requires knowing such a basis. The first spherical point

−→
B1 can be determined

by calculating the cross product of −→c with an arbitrary other vector
−→
L 6= −→c .

Since the numerical quality of the outcome is maximized if
−→
L is itself orthog-

onal to −→c , we choose
−→
L to be the least dominant (§ 3.7) among {

−→
X ,

−→
Y ,

−→
Z }.

Point S2<NT> base1() const {
Dominant E3 least dom = least dominant( x, y, z);
Vector E3<NT> least = get Vector E3<NT>(least dom);

Vector E3<NT> b1 = cross product(least, Vector E3<NT>( x, y, z));
return Point S2<NT>(b1.x(), b1.y(), b1.z());

}

−→
Y

−→
X

−→
Z

O

−→c

−→
B1

−→
B2

The second point B2 can then be calculated as the cross product −→c ×
−→
B1 .

Point S2<NT> base2() const {
NT b2x,b2y,b2z;
Point S2<NT> b1 = base1();
cross product( x, y, z, b1.x(), b1.y(), b1.z(), b2x, b2y, b2z);
return Point S2<NT>(b2x, b2y, b2z);

}

9.4 A Spherical Segment

A spherical segment is defined by an ordered pair of spherical points and con-
sists of one set of points traversed when moving from the source point to the
target point. That much is evident, but otherwise the design of a spherical
segment leaves many options open.

If two antipodal points are allowed to define a segment, for instance, or
if the longer segment on the circle defined by two points is intended, then a
spherical circle must be stored in each spherical segment object. The orienta-
tion of the circle would indicate which of the two segments is meant and, in the
case of antipodal points, would specify the circle on which the segment lies.

O

P

Q

−→
N

Introducing a circle also acts as a cache that stores factors in a determinant
when calculating the orientation of a third point with respect to the segment.
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But numerical precision is one difficulty, for if one computes a circle from a
pair of points, testing whether one of the two points lies on the circle may
fail. Since precision needs in any case to be treated carefully, we choose the
convenience of storing the circle.
template<typename NT>

class Segment S2
{

Point S2<NT> source, target;
Circle S2<NT> circle;

public:
Segment S2() : source(), target() {}
Segment S2(

const Point S2<NT>& source,
const Point S2<NT>& target)

: source(source), target(target)
{

assert( source!= target && source!=− target);
Direction E3<NT> D = cross product(

source.get Direction E3(),
target.get Direction E3());

circle = Circle S2<NT>(D);
}
Segment S2(

const Point S2<NT>& source,
const Point S2<NT>& target,
const Circle S2<NT>& circle)

: source(source), target(target), circle(circle)
{

assert( circle.contains( source) && circle.contains( target));
}
...

};

A constructor whose parameters are two nonantipodal points can deduce
the circle the two points define. Computing its orientation as a cross product
will capture the shorter of the two segments. A second constructor makes it
possible to represent segments described by two antipodal points. It is also use-
ful for segments that are nearly coincident or antipodal, since the reliability of
a cross product will diminish the closer the two points are to being dependent
vectors.

In practice it is simpler to disallow spherical segments that are larger than
half a circle, but it is also possible to make such segments legal and pay a price
in the increased complexity needed to implement functions such as intersec-
tion operations. This is not unlike the decision taken by many geometric and
graphical libraries to handle only triangles and disallow other (convex) poly-
gons. The simplicity of the library is offset by constraining the application
programmer.

−→
N

O

P

Q

−→
M

O

P

Q

(P, Q,
−→
M ) (P, Q,

−→
N )

A degenerate segment defined by two coincident points is not necessarily
also associated with a spherical circle. In practice a system that handles spher-
ical objects will in any case need to confirm whether degeneracy has occurred
and suitably handle such events, perhaps by replacing segments by points.
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Computing whether a spherical point P3 lies in the positive halfsphere de-
fined by two points P1 and P2 is simply a matter of computing a determinant.
template<typename T>

Oriented side
oriented side(

const Point S2<T>& p1,
const Point S2<T>& p2,
const Point S2<T>& p3)

{
T d = determinant(

p1.x(), p1.y(), p1.z(),
p2.x(), p2.y(), p2.z(),
p3.x(), p3.y(), p3.z());

return enum Oriented side(d);
}P1

P2

P3

Additional fundamental objects that can be defined in S 2 are a spherical
triangle and a spherical polygon. A convex spherical polygon can be defined as
one that does not include two antipodal points—a definition Berger [10] credits
to Cauchy. As with the other spherical objects that we have so far encountered,
restricting spherical polygons to be convex simplifies its implementation, as
will be seen when looking at intersections in S 2.

9.5 Intersections

Incidence of a Spherical Point and Circle

Determining whether a point is incident to a circle reduces to asking whether
the two corresponding directions are orthogonal. In that case their inner prod-
uct vanishes.
template<typename T>

class Circle S2
{

...
bool contains(const Point S2<NT>& p)
{

return (dot product( x, y, z, p.x(),p.y(),p.z()) == 0);
}

};

Determining the Points of Intersection of Two Spherical Circles

Two noncoincident spherical circles intersect in two spherical points. The cross
product of the normals of the two planes defining the two circles determines
one point. Its antipode is the other point of intersection.

Yet we will see momentarily in Chapter 11 the elegance that results from
extending Euclidean geometry and declaring that no two lines are parallel.
Rather than encumbering our source code with if statements confirming that
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two lines are not parallel before intersecting them in E 2, the projective plane
P2 will make it possible to develop a system in which two distinct lines always
intersect at exactly one point. By contrast, a function that determines the in-
tersection of two spherical circles in S 2 could be made to be rather awkward.
The client would always be sent back two points and would be asked to choose
between them. But there is a way to return to the elegance of one point per in-
tersection [104, Chapter 6]. We abandon commutativity, which is in any case a
small price to pay. We declare the point of intersection of two spherical circles
−→c1 ∩ −→c2 to be the cross product −→c1 × −→c2 . The antipodal point is returned by
−→c2 ∩ −→c1 . The client interested in both points would either call the intersection
function two times or (more efficiently) compute the antipodal point of the first
point obtained.

−→c1

−→c2

−→c1 ∩ −→c2

−→c2 ∩ −→c1

9.6 Exercises

9.1 The adjacent image shows a set of four spherical circles. Three spherical
circles look reasonable, but one looks rather unusual. Without seeing the
program that produced this image, suggest the reason two tones were
produced at quick alternation.

9.2 In the adjacent image the (minuscule) regions where curves overlap are
striking. Mention how this overlap may have appeared this way and
suggest a way to generate a more reasonable image.

9.3 Refer to Appendices B and C and implement a prototype for visualizing
planet earth. Your system will maintain lines of longitude along the y-
axis of the viewing window and will provide an interface for rotating and
for zooming. Draw the outline of continents after devising rudimentary
coordinates for a reasonable number of vertices.

9.4 Read ahead on Platonic solids (§ 26.3) and then modify the start-up code
labeled “spherical model” such that for each vertex of a Platonic solid,
the circle defined by the circular point coincident with that vertex is
drawn. Generate one image for each solid and argue whether the strategy
above should lead to a regular tiling of the sphere when starting from the
vertices of Platonic solids.

For many other examples of potential sphere partitions, see Wenninger’s
Spherical Models [116].

9.5 Read ahead on Platonic solids (§ 26.3) and on Euler operators (Chap-
ter 27) and then implement the following system.

Choose a Platonic solid and implement the operation of either tapering a
vertex or insetting a face. Apply the operation you chose on all the ver-
tices (faces) of the solid and visualize the resulting solid as its vertices,
edges, and faces project on S 2.

Visualize each face by implementing a recursive partitioning algorithm
on each resulting spherical face. A face is divided if the angle for each
of its edges (segments) is larger than a given threshold. Divide a triangle
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by inserting three additional vertices at the midpoint of each edge and
divide any other regular polygon by inserting a point at the center of the
polygon. Begin from the start-up code labeled “spherical model.”

9.6 Implement a function for the intersection of a spherical circle and a
spherical segment in S 2.

9.7 Implement a function that returns a Boolean flag to signal whether two
spherical segments in S 2 intersect.

9.8 Implement a function that finds the point of intersection of two spheri-
cal segments in S 2. Use a precondition that both segments are strictly
smaller than half a spherical circle.
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10 Rotations and Quaternions

Orthogonal matrices (§ 4.6) and orthogonal transformations (§ 4.7) would ap-
pear to perform rotations quite adequately. Yet we are not content. We suspect
that an operation as elementary as rotation can be expressed more concisely
(and hence more elegantly) than using a 2 × 2 matrix for E 2 or using a 3 × 3
matrix for E 3. It would also appear that the set of rotations is the natural set
to study as the set of transformations that can be applied on objects in S 1 or
on S 2. The magnitude of a vector in these two spherical geometries is in-
significant and so a matrix that is also capable of scaling is surely excessive
for capturing rotations. Rotations in the plane are simple and have been per-
fectly understood when complex numbers became an accepted notion, but ro-
tations in space had to wait until the concise object that can capture them—the
quaternion—was discovered in 1843 at the hand of one Irish man. Quaternions
begin with a story involving Hamilton, a walk with his spouse, and a charming
instance of defacing public property (a bridge) that has inspired historians of
mathematics ever since.

10.1 Rotations in the Plane

How many ways are there to represent rotations in the plane? Chapter 4 dis-
cussed that rotations are a subset of objects captured by affine transformations,
but here we seek rotation objects that we can apply on objects in the geometry
of the circle S 1. A design using the basis vectors of the rotation would ensure
during construction that the two unit vectors−→u1 and−→u2 are indeed orthogonal.
Since directions in the plane are only normalized on demand, we can also not
rely on directions being unit vectors; two explicit vector normalizations are
needed.

template<typename NT>

class Rotation S1
{

Vector E2<NT> u1;
Vector E2<NT> u2;

public:
Rotation S1() : u1(1,0), u2(0,1) {}
Rotation S1(const Vector E2<NT>& u1, const Vector E2<NT>& u2)

: u1(u1), u2(u2)
{

assert( inner product( u1, u2) == 0 );
u1.normalize();
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u2.normalize();
}
...

};

A more economical design is to store only one of the two vectors, say −→u1 ,
and deduce the value of the second, −→u2 , whenever needed. This is possible
because the matrix M

M = [−→u1 ,
−→u2 ] =

[
u1.x u2.x
u1.y u2.y

]
is proper orthogonal, and so −→u2 can be constructed by applying a quarter-turn
counterclockwise rotation to −→u1 . Rotations are multiplications in the complex
plane. If a given vector is interpreted as lying in the complex plane, the desired
rotation can be applied by multiplying by a unit complex number (one on the
unit circle). The complex number needed to apply a π

2 -rotation is (0 + 1 · i)
and so −→u2 = (u1.x+ u1.y · i) · (0 + 1 · i) = −u1.y + u1.x · i.

An even more economical design is to use the rotation angle.

template<typename NT>

class Rotation S1
{

NT rotationAngle;
public:

...
};

But this design is unattractive because slow trigonometric functions would
need to be invoked before the transformation is applied.

Such a long-winded approach is evidently not necessary: If we know that
rotation is equivalent to multiplication in the complex plane, we might as well
make do without a special rotation object in the first place. But this set-up is
a useful prelude to quaternions and order-3 orthogonal transformations, which
will be applied on S 2. In any case, we verify that the transformed point P ′ can
be obtained from P by applying P ′ = (P.x+ P.y · i) · (r.x+ r.y · i) and that
the equivalent 2× 2 orthogonal matrix is indeed[

r.x −r.y
r.y r.x

]
.

And so an instance of Rotation S1 can conceivably act merely as a wrapper for
a unit complex number.

template<typename NT>

class Rotation S1
{

std::complex<NT> unitz;
public:

Rotation S1() : unitz(1,0) {}
Rotation S1(const Direction E2<NT>& d)
{

NT m = std::sqrt(d.x()∗d.x() + d.y()∗d.y());
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unitz = std::complex<NT>(d.x()/m, d.y()/m);
}
Rotation S1(const NT& rx, const NT& ry)
{

NT m = std::sqrt(rx∗rx + ry∗ry);
unitz = std::complex<NT>(rx/m, ry/m);

}

Point S1<NT> rotate(const Point S1<NT>& P) const
{

NT x = unitz.real() ∗ P.x() − unitz.imag() ∗ P.y();
NT y = unitz.imag() ∗ P.x() + unitz.real() ∗ P.y();
return Point S1<NT>(x,y);

}

Segment S1<NT> rotate(const Segment S1<NT>& seg) const
{

return Segment S1<NT>(rotate(seg.source()), rotate(seg.target()));
}
...

};

Taking the ultra-purist approach of adding a layer of abstraction to complex
numbers when the operations needed from that class could have easily been
implemented has advantages. First, it illustrates how delegating the combina-
tion of rotations to complex multiplication (shown below) evidently discards
some information: If the combined angle exceeds a full turn, only the remain-
der is stored and the rotation object maintains no recollection of the history.
Second, we will encounter the same ideas again in the context of rotations on
the sphere, and it is instructive to see most notions already present in the geo-
metry of the circle. Last, such encapsulation gives us the freedom to use an
alternative rotation scheme without making the changes perceptible from the
client side.

template<typename T>

class Rotation S1
{

...
Rotation S1<T> operator∗(const Rotation S1<T>& R2)
{
return unitz ∗ R2.unitz;
}

};

10.2 Rotations in Space

The rotation objects discussed in this section act equally well on spherical ob-
jects as they do on objects in Euclidean space. Yet the discussion is delayed to
this point (rather than introduced in Chapter 4) to ensure that spherical objects
and motions on a sphere are appreciated first.
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Can transformations other than rotations be applied in spherical geometry?
If it seems that it is too limiting for rotations to be the only transformation
applicable, it is because they are not. A richer set of transformations can be
applied on a geometry that has the same topology as spherical geometry, but
because the transformations are distinct, the geometry shall also be considered
distinct. This oriented projective geometry is discussed in Chapters 14 and 15.

The properties of quaternions can all be derived once we take faithfully the
following two equations as those of a new type of imaginary number. This
new object, dubbed a quaternion because it has four parts, will be to 3D what
complex numbers are to 2D—a natural rotation object [31].

q = r + xi+ yj + zk,

i2 = j2 = k2 = ijk = −1

Once this definition has been accepted, a new algebra can be shown to
apply 3D rotations:

ij = −ji = k, jk = −kj = i, andki = −ik = j.

If −→v is a 3D vector −→v (x, y, z), a quaternion can be defined as the sum of a
real scalar r with the inner product of −→v and the new imaginary basis (i, j, k):

q = [r +−→v · (i, j, k)]. (10.1)

It then makes sense to talk about the real part of a quaternion, r, and its
imaginary part, −→v · (i, j, k) = xi+yi+zk. A quaternion with a zero real part
it termed a pure imaginary quaternion.

Using the above identities, two quaternions q1 = r1 +x1i+ y1j+ z1k and
q2 = r2 + x2i+ y2j + z2k can be added:

q1 + q2 = (r1 + r2) + (x1 + x2)i+ (y1 + y2)j + (z1 + z2)k

and multiplied:

q1 ∗ q2 =(r1r2 − x1x2 − y1y2 − z1z2)
+ (r1x2 + r2x1 + y1z2 − y2z1) i
+ (r1y2 + r2y1 + z1x2 − z2x1) j
+ (r1z2 + r2z1 + x1y2 − x2y1) k. (10.2)

As with complex numbers, it is useful to define the conjugate of a quater-
nion by negating the imaginary parts:

q∗ = [r − v.(i, j, k)] = r − xi− yj − zk.

The product of a quaternion by its conjugate is a real-valued scalar:

q ∗ q∗ =(rr + xx+ yy + zz)
+ (rx− rx+ yz − yz)i
+ (ry − ry + zx− zx)j
+ (rz − rz + xy − xy)k

=(r2 + x2 + y2 + z2).
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And so if the norm of a quaternion is defined as

N(q) = r2 + x2 + y2 + z2,

the multiplicative inverse of a quaternion becomes q−1 = q∗/N(q), with the
norm (not its square root) as the denominator. As can be easily verified, the
left and right multiplicative inverses of a quaternion are equal.

If the norm of a quaternion q is 1, we say that q is a unit quaternion. Deal-
ing with unit quaternions is convenient. Their products, their conjugates, and
their inverses are all also unit quaternions.

Storing the Imaginary Component as a Vector

If one finds writing either Eq. (10.2) or its implementation tiring, delegating
the computation to vectors as expressed in Eq. (10.1) (due to Gibbs [46]), can
simplify both:

q1 =[r1 + v1 · (i, j, k)]
q2 =[r2 + v2 · (i, j, k)]

q1 ∗ q2 = [r1r2 − v1 · v2, [r1v2 + r2v1 + v1 × v2] · (i, j, k)] .

A quaternion object is then implemented by encapsulating a vector, and the
quaternion product is expressed as vector dot and cross products.

template<typename T>

class Quaternion v
{

T r;
Vector 3<T> V;
...
Quaternion v<T>

operator∗(const Quaternion v<T>& q2) const
{
T newr = r ∗ q2. r − dot product( V, q2. V);
Vector 3<T> newv = q2. V ∗ r + V ∗ q2. r + cross product( V, q2. V);
return Quaternion v<T>(newr, newv);
}

Rotation Using Quaternions

Just as with complex numbers, an arbitrary nonzero quaternion can be used to
perform rotations in 3D. But unlike complex numbers, the operation requires
the use of both the quaternion and its inverse.

If we construct a quaternion from a (not necessarily unit) vector −→v in 3D
and, for simplicity, write the conversion as v = −→v where v is a pure imaginary
quaternion, the result of the product

v′ = q−1vq

effects the rotation of −→v into
−→
v′ , represented as the pure imaginary quater-

nion v′.
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Finding the Quaternion Corresponding to an Angle-Axis Pair

Rotation by an angle θ about the 3D axis −→v (x, y, z) can be effected by the
quaternion

q = cos
θ

2
+ sin

θ

2
−→v · (i, j, k). (10.3)

An arbitrary nonzero quaternion is suitable for performing rotation because
determining the conjugate will require dividing by the norm. Since the num-
ber of vectors that are mapped is typically large for each rotation, it is useful
to avoid constantly dividing by the norm and restricting one’s attention to unit
quaternions. In that sense the class Rotation S2 completely mirrors the con-
nection between Rotation S1 and complex numbers. Rotation S2 is merely a
wrapper for a unit quaternion.
template<typename T>

class Rotation S2
{

Quaternion<T> unitq;
...

};

The convenience of rotation using a unit quaternion stems from the conju-
gate being equal to the inverse. Hence, for a unit quaternion we can write

v′ = q∗vq.

Finding the Linear Transformation Corresponding to a
Quaternion

The linear transformation corresponding to a quaternion can be found by the
somewhat tedious (since it involves 64 multiplications) process of converting
the two quaternion products to a matrix-vector multiplication, discarding the
imaginary quantities in the process.

The rotation of −→v (a, b, c) using q(r, x, y, z) is effected by

(0, x′, y′, z′) = (r,−x,−y,−z)(0, a, b, c)(r, x, y, z).
Expanding, the requisite linear transformation matrix is found to be

M =

 1− 2y2 − 2z2 2xy + 2rz 2xz − 2ry
2xy − 2rz 1− 2x2 − 2z2 2yz + 2rx
2xz + 2ry 2yz − 2rx 1− 2x2 − 2y2

 .

Finding the Angle and Axis of a Quaternion

Given a quaternion q(r, x, y, z), it is easy to find the angle θ and the axis of
rotation −→v from Eq. (10.3).

θ = 2 cos−1 qr

−→v =
(

qx
sin(cos−1 qr)

,
qy

sin(cos−1 qr)
,

qz
sin(cos−1 qr)

)
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Quaternion Interpolation in S 3

Interpolating linearly on the arc between two spherical points does not lead
to linear interpolation on a sphere, or spherical linear interpolation—for oth-
erwise trisecting a segment, for example, would lead to trisecting an angle
[103]—the instance of the problem on the circle S 1 (Chapter 8). Likewise, in-
terpolating spherical points in S 2 cannot be done by cutting across the sphere,
but must be performed on the surface of the sphere.

Interpolating quaternions also needs to be done on a sphere. The sphere
in question is the unit sphere S 3 embedded in Euclidean 4D [10]. The 4D
points representing quaternions are constrained to lie on a sphere since any two
quaternions related by a positive scalar multiple represent an identical orienta-
tion. In that quaternions share the constraint with directions in the plane, but
the correspondence with orientation in 2D falters: Not all points in S 3 repre-
sent a unique orientation, because the quaternions q and −q capture the same
orientation. This can be seen by extracting the (oriented) axis and the (ori-
ented) angle of rotation. If both the axis and the angle are reversed, the result-
ing rotation remains unchanged.

If q1q2 = cos θ, spherical linear interpolation [97, 46] is determined by

slerp(q1, q2, u) =
sin (1− u)θ

sin θ
q1 +

sinuθ
sin θ

q2.

10.3 Exercises

10.1 a. Multiply the two quaternions

q1 = 1 + 0i+ 1j + 0k and q2 = 0 + 1i+ 0j + 1k.

b. Find 1/q3 for a quaternion q3

q3 = a+ bi+ cj + dk; a2 + b2 + c2 + d2 = 1.

10.2 Even though it is not possible to trisect an angle using a ruler and a
compass, it is possible to trisect a segment. Given a pair of points in
the plane, show the steps needed to generate two additional points that
divide the given segment into three segments.

10.3 Since rotations in the plane are a special type of rotation in space, one
can use quaternions for the latter. Develop a class Rotation S1 that acts
as a wrapper for a unit quaternion specialized to this application.

10.4 The start-up code labeled “orbits” shows the trajectory of a planet “earth”
and an orbiting “moon,” but the motion is incomplete. Modify the code
while incrementally implementing the following:

• The north-south axis of the earth is parallel to the rotation axis.

• The moon orbits around the earth.

• The earth spins around its own north-south axis.

• The axis of the earth tilts during rotation.
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The objective is to animate all motions simultaneously, but not neces-
sarily that the generated motions are faithful to reality. In particular,
circular planetary trajectories are adequate for our purposes.

10.5 The start-up code labeled “slerp on s1” shows the effect of linear inter-
polation between two distinct and nonantipodal points on S 1. Modify
the code to perform spherical interpolation instead. After completing
the implementation, study the location of the interpolated point for val-
ues 0.25 and 0.75 and explain your observations.

10.6 The start-up code labeled “rotation-group” slerps a wire sphere between
two orientations. Modify the code such that pressing a key from “a” to
“k” animates a tetrahedron from some original position to any of the 11
positions to which it can be moved such that it rotates to a new orienta-
tion, but then rests coinciding with the original position (see § 26.3).

10.7 The motion shown in the code labeled “rotation-group” shows quater-
nion interpolation in S 3. Show two additional animations that exhibit
interpolation in S 1 and S 2.

10.8 The start-up code labeled “euler-angles” accompanying Chapter 4 makes
it possible to position an object in 3D using Euler angles.

Solve Exercise 10.6, but use interpolation over Euler angles instead. The
objective is to be convinced how undesirable the result of interpolating
rotation using Euler angles can be.

Make sure that the rotation for each individual Euler angle traverses the
shortest path about its own axis (see Exercise 4.6).

10.9 We saw in § 4.10 that three pairs of points define a unique affine mapping
in E 2. We will also see in § 11.1 that four pairs of points define a unique
projective mapping in P2. It is easy to see that two pairs of equidistant
points define a unique rotation on S 2.

Write a function that takes two pairs of equidistant points in S 2 and that
generates the quaternion needed to rotate the first pair of points so that
they coincide with the second pair.

Notice that the problem is overconstrained since the distances (or an-
gles) between the points in each pair will, in general, not be equal under
floating point.

10.10 Solve Problem 10.9 then choose one of the start-up programs and mod-
ify it to visualize a uniform-speed animation taking one pair of points to
another pair.
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11 Projective Geometry

Projecting a 3D scene on a 2D canvas or image is the process of constructing a
mapping between points in the scene and points on the canvas. Such projective
mappings, which are the basis of constructing perspective images, are the topic
of this chapter.

Desargues and Pascal showed projective properties of figures. Dürer be-
fore them showed how an artist can construct accurate projections, but the first
to set projective geometry as a science was Poncelet. Lying injured among
Napoleon’s defeated army in 1812, Poncelet’s life was spared because he was
wearing an officer’s uniform [8]. Bored with his captivity, and with access to
pen, paper, and candles, but to no references, he developed axiomatic projec-
tive geometry in a jail cell in Russia in 1812–1814.

11.1 The Projective Line

We start with the simplest possible projection—one that maps points on one
line to points on another. We wish to define a mapping from points on a line l
to points on a line m through a center of perspectivity E not incident to either
l or m (Figure 11.1). The image of a point A on l is the point A′ on m. A′ is
the intersection of the line EA and m.

A
B C

B′ = f(B)

A′ = f(A) C ′ = f(C)
m∞

E

l

f(l∞)f−1(m∞)
m∞

l∞m

l∞

Figure 11.1
Projection between two lines

But consider the point on l at the intersection of the line passing by E
and parallel to m and consider also the point on m at the intersection of the
line passing by E and parallel to l. We could certainly study the mapping by
removing the two points from l andm. With the two points removed, there is a
one-to-one correspondence between the points remaining on l and m. But we
are interested in projective mappings to construct images (1D images in this
case). Having a point in the image map to no point in the scene, or vice versa,
is inconvenient. An implementation would have frequently to test whether a
point can be mapped before performing the mapping.

The mapping would be more elegant if we studied it without removing
the two points and declared instead that either point does map. The basis of
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projective geometry lies in declaring that each of the two lines is augmented
with an ideal point, or a point at infinity, that completes the mapping. Thus,
each line will consist of a set of affine points in addition to a single additional
ideal point. Each such line is an instance of the projective line P1.

By augmenting the two lines with the points l∞ andm∞—and keeping the
two points we contemplated removing—the mapping is bijective. Because the
perspectivity maps an affine point to an ideal point, we refer to the mapping as
a projective mapping. If the two lines l and m become parallel, the mapping
would be affine: Each affine point would map to an affine point and the two
ideal points would map to one another.

Finding the Center of Perspectivity

If the two lines and the center of perspectivity are known, then the mapping
can be easily found, but what if we reverse the problem and ask for the center
of perspectivity given two lines? We would first need to establish the number
of pairs of points needed to uniquely define a projective mapping. We saw
in Chapter 4 that precisely two pairs of points define an affine mapping. To
see that three pairs of points are needed, consider the case when three distinct
points are determined on two given lines. We take the liberty of displacing one
of the two lines through translations and rotations until the mapping and the
center of perspectivity are evident. If the three points A, B, C map to A′, B′,

l

m

E

A

A′

B

B′

C

C′

and C ′, we can position m such that A and A′ coincide and determine E by
finding the intersection of BB′ and CC ′.

This mapping satisfies all our constraints. The three points are mapped to
each other through projection from E, the mapping is bijective, and the two
ideal points on the two lines project to one point each. That the projectivity
between two sets of three distinct points is unique is called the fundamental
theorem of projective geometry. To establish that theorem, we can be more
rigorous by not taking the liberty to move one of the two lines. Given three
points on two lines, we proceed instead to find two projective mappings. The
combination of the two mappings would yield the requisite projective trans-
formation [79]. Choose a third line passing by A′ distinct from ABC and
A′B′C ′. Also choose an arbitrary center of perspectivity on AA′ distinct from
both points. Project once (light projectors) on the new line. Choose the second

A

B

C

A′

B′

C′
B′′

C′′

center of perspectivity at the intersection of B′B′′ and C ′C ′′. Project a sec-
ond time (dark projectors). By construction the second projection maps A′ to
itself. The composition of the two transformations is the requisite projective
mapping.

Suppose that the three points are not distinct and that, for instance, B is
coincident with C. We might still declare that we have a perspectivity by
positioning the eye E at E = B = C, but that perspectivity would be a
degenerate one; it would map not just B′ and C ′ to B = C but all points
on the line B′C ′ to E = B = C. The mapping between A and A′ could
only be satisfied if A′ also coincides with B′ = C ′. We would then have a
degenerate mapping from all points on one line to a single point on the other.
Such a mapping would, naturally, not be invertible. The characteristic of such

A
B

C

A′ = B′ = C′

degenerate mappings, as we shall see after introducing coordinates for points
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and matrices for transformations in Chapter 12, is that the determinant of the
transformation matrix vanishes and the matrix is singular.

Nonseparability of the Projective Line

Notions that we take for granted in Euclidean geometry such as separation, sid-
edness, betweenness, and separability make no sense in projective geometry.
The points in the Euclidean plane, for instance, can be classified as lying to the
left, to the right, or on a directed line in that plane. In E 2 a point is also said
to be on the left, to be on the right, or to be colinear with an ordered pair of
points. Separation is exhibited on the Euclidean line as betweenness; a pointB

B︸︷︷︸ ︸︷︷︸
CA

is said to lie between two other points A and C if it is impossible to repeatedly
apply minuscule transformations to animate the motion of A until it coincides
with C without passing by the separating point B. Affine transformations are
incapable of changing this order; any nonsingular affine transformation will
keep B between A and C.

In contrast, an inherent property of projective transformations is their abil-
ity to map an affine point to an ideal point and vice versa. We may position
three distinct points A, B, and C in P1 such that B would appear to separate
A and C. In other words, it would appear that a particle at A could not be ani-
mated to reach C without passing by C. The futility of using B as a separator,
or of attempting to divide P1 into points on one side or the other (in addi-
tion to the separator itself), becomes evident when we consider the projection
depicted.

A projection from l to m has now mapped A to A′ and C to C ′. B′ no
longer separates A′ and C ′. But B also does not separate A and C. It will
become more evident in Chapter 12 that the projective line is more accurately
modeled as a circle, but we already see that that is the case because there is
only one ideal point on each projective line. Cutting a projective line at one
projective point B yields one connected piece of the circle, not two. It would
still be possible to go from A to C by passing by the ideal point of l.

lm

A

B

C

A′

B′

C ′

E

Would it perhaps be possible to restrict the class of projective transforma-
tions to disallow those that modify the betweenness relationships? It is rea-
sonable to ask this question, for example, because it is reasonable in Euclidean
geometry to restrict transformations to those that do not include a reflection
(the transformation matrix then has a positive determinant). If a set of points
lies on the right of a separator line in E 2 before a transformation, they con-
tinue to lie on its right after transformation. But restricting projective trans-
formations in P1 to map the ideal point to itself would result in precisely the
class of affine transformations. The requisite construction for performing the
projection would position the two “projective” lines parallel to one another.
Two pairs of points now suffice to determine the center of perspectivity and an
affine transformation is obtained!

Projection Does Not Preserve Ratios

Affine mappings (Chapter 4) preserve ratios; the ratio of the lengths of two
segments does not change after an affine transformation. The ratio of lengths is




	

��

112 PROJECTIVE GEOMETRY

another attribute of affine transformations that is not preserved under projective
transformations. The figure illustrates that even though the lengths of AB and
BC are equal before projection, they are, in general, not equal after projection.

l

m

A B C

A′
B′

C′

E A Matter of Prepositions

The issue of prepositions was discussed in § 2.5, but it is worth recasting it in
the context of projective geometry. Most of the time we consider a given space
on its own. The projective line P1, the projective plane P2, and the projective
space P3 can all be studied independently as a standalone set of points. In
that case we say that a point is in the corresponding set. The point models
a creature of dimension equal to that of the space—the creature is unable to
comprehend any higher dimension. By contrast, if we embed, say, P1 in P2

or in P3, then we refer to a point on P1. The creature is now either two- or
three-dimensional, but is limited in its motion to one dimension. The same
distinction can be made by using different labels [79]. We could refer to the
intrinsic projective line when we think of P1 on its own and to the extrinsic
projective line when we think of it as lying in P2 or P3.

11.2 The Projective Plane

The two projective lines have so far been embedded in a plane to perform
the mapping. Likewise when we now move one dimension higher to map
between two projective planes P2, the two planes will be embedded in three-
dimensional space.

This embedding provides us with the first chance to argue that what we are
doing is useful. Since 3D objects are, in general, modeled as faceted objects
and since the projection of an object can be examined as the projection on a
canvas, or image plane, of many facets, the projection of a 3D object can be
studied as many instances of projecting between two projective planes. In each
instance the plane carrying a facet is referred to as the object plane. As with
projections between lines, the aim is to establish a bijective mapping between
points on the object plane and points on the image plane.

Mapping of a Segment and a Line

Consider a segment AB lying on the object plane. To determine the projection
of AB on the image plane as seen through E, we construct the two lines EA
and EB. The intersections of the two lines with the image plane determine the
two projection points A′ andB′. We also know that the projection of all points
lying on the line (segment) AB are colinear on the image plane; they lie at the
intersection of the plane EAB with the image plane. Thus, the projection of
the segment AB is also a segment, A′B′, and the projection of the line AB is
the line A′B′. No constraints are imposed on the position of either A or B. In
particular, points A and B may lie on opposite sides of the image plane.

A

B

A′

B′

image plan
e Eye

object plane
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Once again the map between a line l and its projection P (l) has a property
that distinguishes it from the affine maps discussed in Chapter 4. The point
l∞, the ideal point of l, maps to an affine, or nonideal, point P (l∞).

The projection of l is determined by constructing the plane in 3D that car-
ries both E and l. The intersection of that plane (shaded in the figure) with the
image plane determines l′ = P (l).

To find P (l∞) we determine the line parallel to l and passing by E, and
then find its intersection with the image plane. Observe that the mapping is
bijective; l has only one ideal point.

l∞

P (l∞)

l

l′ = P (l)

A few special cases merit attention. If E lies on the image plane, the
projection is singular: All points on lmap to a point that coincides withE. IfE
lies on the object plane, P (l) coincides with the intersection of the two planes.
If E lies on l, the projection is again singular, and the line P (l) collapses into
the one point where l meets the image plane.

The fact that these cases mirror those in § 11.1 is no accident. All details
are identical because we are now in a linear subspace of 3D space.

But if two parallel lines l1 and l2 are projected, the above method for find-
ing the image of the ideal point of each line would produce the same point on
the image plane. We must conclude that if P (l∞1 ) coincides with P (l∞2 ), it is
because l∞1 and l∞2 are also coincident.

l∞

l1
l2

Now consider a set of parallel lines S1 in the object plane and likewise
another two sets S2 and S3. From the argument above the lines in S1 meet at
one ideal point S∞1 . Similarly, those in S2 and S3 meet in S∞2 and S∞3 .

The projections of S∞1 , S∞2 , and S∞3 through E are P (S∞1 ), P (S∞2 ), and
P (S∞3 ). Because the three sets of parallel lines are coplanar, we must conclude
that the projections of their ideal points (P (S∞1 ), P (S∞2 ), and P (S∞3 )) are
colinear. Construct the plane passing byE and parallel to the object plane. The
line defined by P (S∞1 ), P (S∞2 ), and P (S∞3 ) is determined by the intersection
of that plane with the image plane.

Because the line thus defined is akin to what we commonly perceive as a
horizon, it is called the horizon line. Just as an ideal point on the projective
object plane maps to an affine point on the projective image plane, so does the
ideal line on the object plane map to an affine line on the image plane.

horizon line

ideal points
P (S∞1 )

S∞1

S1

S2 S3

It is necessary for the image plane also to be a projective plane. To see that
that is the case, consider a point on the plane parallel to the image plane and
passing by the center of perspectivity E. The image of that point is an ideal
point on the image plane.

Notice also that a point on the opposite side from the image plane of the
plane parallel to the object plane and passing by E would project onto a point
on the opposite side from the object plane of the plane parallel to the object
plane and passing by E.

Projection Does Not Preserve Parallelism

Perhaps the most prominent feature with which we recognize perspective im-
ages is that it destroys parallelism. When surrounded by tall buildings, we
experience their sides as intersecting rather than as parallel lines. We also per-
ceive railroad tracks as meeting at a point.
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As long as the image plane is not parallel to the set of parallel lines (i.e., to
the object plane), the projection of the lines will meet at an (affine) point on the
object plane. Projective geometry is one possible model of the physical world.
Lines that are parallel in a Euclidean model remain parallel in a projective
model, but, unlike in a Euclidean model, they intersect at a point.

horizon line

ide
al

po
int

Nonseparability of the Projective Plane

Consider two intersecting lines l and m in the projective plane and imagine
someone traveling from the intersection point along the line l. The traveler
eventually reaches the ideal point of l and emerges on the opposite side of m.
This means that it is possible in the projective plane to go from one side to the
other of some line m without crossing the line. A line m does in fact not have
two, but only one side.

l

m lm l

m

Imagine constructing the projective plane P2 out of some rubberlike mate-
rial. Now proceed to push the material, along with the two lines l and m, until
the line m reaches the ideal line of the plane P2. The point of intersection of
l and m has been dragged all along and now that point is an ideal point. The
one-sidedness of m is now evident: All points of P2 lie on that one side.

The implication is that the projective plane is not separable. A line in the
Euclidean plane divides the points in the plane into three sets: those lying on
either side of the line as well as those lying on the line.

Because by contrast a line in P2 has only one side, the projective plane is
said to be nonseparable. A given line on P2 divides the points in P2 into two
sets: those that lie on the line and those that do not. And so it is possible to
implement a predicate that determines whether a point is incident to a line in
the projective plane, but not whether two points lie on the same side of the line.

Topology of the Projective Plane

Now suppose that we do attempt to build the projective plane out of some
fabric, what would the resulting object look like? We would take a circular
piece of fabric and stitch together opposite points. In doing so we would be
performing physically what we earlier decided to do logically: to declare op-
posite points identical. But after joining the two points marked A together,
and likewise for B and C, we will no longer be able to proceed; the projective
plane cannot be embedded in 3D space without self-intersecting. The structure

A

B

C

C

B

A

obtained after connecting three opposite points is the familiar Möbius strip.
Indeed, all we have to do to complete the projective plane from a Möbius strip
is to stitch a band at the boundary of the strip and pull until the entire boundary
is a single point [49, 87].

Another diagram [28, 15] illustrates the topology of the projective plane as
well as hints to its connections with spherical and oriented projective geome-
tries. Consider three points and the three lines they define in the projective
plane P2. Each pair of points defines two segments, an internal, entirely affine,
segment, and an external segment that includes an ideal point. The three lines
partition P2 to four triangles, shown in different shades of gray. In addition
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to the internal, entirely affine, triangle, there are three external triangles. Each
such triangle includes one (not two) segment on the ideal line.

Difficulty in Defining Projective Segments

Computing in the projective plane holds other problems. We earlier looked at
the projection of a segment AB from one plane to another. But the notion of
a segment itself poses a difficulty. To see the difficulty, it suffices to repeat a
diagram discussed under P1, but after embedding it in P2.

The two points A and C project to the points A′ and C ′. But even though
all points of the segment AC are affine, not all points on the segment A′C ′ are
affine.

AB

C

A′

B′

C′

Suppose that we define a class Segment P2. Consider also that we define a
class Transformation P2 (sketched in § 12.6). We would encounter a difficulty
after applying a transformation on a given segment; there will be no way to
determine which of the two potential projective segments resulted from the
transformation. We continue this argument in § 12.1.

11.3 The Projective Space

It is once again easiest to think of the projective space P3 as consisting of the
set of points in the Euclidean space E 3 in addition to the points on a sphere at
infinity. A point may be either an affine point or an ideal point. A plane may
be either affine; it then includes one ideal line, or ideal; and then all lines on it
are ideal. A set of parallel planes meet at one ideal line.

A line may be either affine or ideal. An affine line consists of a set of
affine points in addition to an ideal point—the two points at infinity being
identified. An ideal line lies on the ideal plane. The topology of the line
remains equivalent to a circle.

There are an infinite number of projective planes embedded in projective
space, each of which has the structure of the canonical projective plane P2. So,
for example, two lines lying in a projective plane intersect at an affine point if
they are not parallel and at an ideal point if they are. Likewise, two projective
planes always intersect: at an affine line if they are not parallel and at an ideal
line if they are.

A plane and a line not lying in the plane always intersect at a single point.
If either the plane or the line is ideal, the point of intersection is ideal. The
intersection point is also ideal if the line and the plane are affine and parallel.

Before tackling the algebra in Chapter 12, we spend a moment discussing
construction operations. Aside from determining points, lines, and planes di-
rectly through coordinates, we may wish to construct them from other geome-
tric objects. A point in P3 is determined from the intersection of three planes
or from the intersection of a line and a plane. A line in P3 is determined by ei-
ther joining two points or intersecting two planes. A plane is determined either
by joining three points or by joining a point and a line.

Adding projections to rigid-body and affine transformations, we obtain
Table 11.2.
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Figure 11.2
Properties preserved

by transformations

Transformation Rigid body Affine Projective
Preserves colinearity colinearity colinearity

parallelism parallelism
distances and angles

Examples rotation rotation rotation
translation translation translation

scale scale
shear shear

projection

11.4 One-, Two-, and Three-Point Perspective

Architects often use one-, two-, and three-point perspective renderings of city
scenes and interior design scenes. Because most lines in such scenes are par-
allel to one of the three orthogonal axes, it is convenient to classify them into
one of these three categories of perspective.

1-point

y

x

z

2-point

3-point

One-Point Perspective

If the view direction is parallel to, say, the x-axis, all lines parallel to y and
all lines parallel to z will remain parallel in the image. Lines parallel to x will
have a vanishing point. The resulting images similar to those in Figure 11.3
are termed one-point perspective images.

Figure 11.3
Examples of one-point perspective (b)(a)

Two-Point Perspective

If the view direction is parallel to one plane, say the xz-plane (and therefore
the view plane is parallel to the y-axis), then all lines parallel to y will remain
parallel in the image, but lines parallel to x and lines parallel to z will each
have one vanishing point.

When rendering such a scene, the artist will start by declaring a line as the
vanishing line of the ground plane (and of all planes parallel to it) as well as
two vanishing points on that line.
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Three-Point Perspective

Three-point perspective images are used to accentuate the height of a building
and to amplify its height compared to the height of the observer. In this case a
third vanishing point is chosen as the point where all vertical lines meet. Since
the vertical lines are not coplanar with the ground plane, the third vanishing
point should not lie on the first chosen vanishing line.

In this case the view direction is not parallel to any of the three major axes
and each set of lines parallel to one of the axes will have a vanishing point.

11.5 Exercises

11.1 One way to generate a perspective drawing of a grid of equal-sized
squares is to fix the nearest corner of the grid and then to choose two
vanishing points for the grid lines and a third for the diagonals in ad-
dition to the size of one side of the nearest square. The four points are
shown as bullets in Figure 11.4. Implement a system that draws such a
grid and that makes it possible for the user to move the four points to
generate a different perspective.

Figure 11.4
Perspective of a regular grid

11.2 Using Euclidean geometry objects, implement a drawing system that
renders a three-point perspective image consisting of two “buildings.”
The system would maintain the drawing while making it possible for the
user to drag any of the three vanishing points.

11.3 Does the ideal plane in P3 include any lines that are not ideal? Explain.

11.4 Draw a sketch showing the point of intersection in P3 of

1. an affine plane and an affine line that are not parallel.

2. an affine plane and an affine line that are parallel.

3. the ideal plane and an affine line.

4. an affine plane and an ideal line.

11.5 This perspective drawing of a parallelepiped is incorrect. Mention the
property of perspective that is not respected and that reveals this drawing
is a false perspective. Sketch a plausible correction.
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11.6 We saw how to project a set of parallel lines on an image plane. Consider
the converse problem. You are given a set of lines that meet at a point as
well as the location of an observer. Describe how you would construct a
set of parallel lines that project to the given set of intersecting lines.

11.7 Desargues, an architect from Lyon, showed the following theorem in
1648 [106]. If in two triangles ABC and A′B′C ′ the lines AA′, BB′,
and CC ′ meet in one point, then the point of intersection of AB and
A′B′, that of AC and A′C ′, and that of BC and B′C ′ are colinear.

Develop a system that visually confirms Desargues’s theorem by allow-
ing the user of your program to manipulate any of the six vertices in-
teractively. The theorem holds in the projective plane, but your imple-
mentation will use only Euclidean objects and Cartesian coordinates. To
simplify confirming visually that the three intersection points are colin-
ear, draw a degenerate triangle.

Exercise 12.9 is a sequel implementation in the projective plane using
homogeneous coordinates.

A
A′

B
B′

C

C ′

O

11.8 Is it the case that any projective transformation that preserves ratios is
an affine transformation? Justify.

11.9 Pappus of Alexandria established in the fourth century B.C. the follow-
ing theorem.

If the six vertices of a hexagon lie alternately on two lines,
the three points of intersection of pairs of opposite sides are
colinear [27].

Develop a system that visually confirms Pappus’s theorem by allowing
the user to manipulate any of the six vertices interactively.

A

A′

C ′

B
C

B′

11.10 The figure shows a false (i.e., incorrect) perspective of a traffic circle.
One possible mistake is that the two lines representing each street are
parallel and should thus meet at a vanishing point, yet they are shown as
parallel in this drawing.

1. Under what condition(s) would the drawing in fact be correct (while
each two lines remain parallel and ignoring the circle itself)?

2. Modify the drawing such that each two parallel lines do meet at one
vanishing point while paying special attention to the relationship
between all vanishing points.
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12 Homogeneous Coordinates for Projective Geometry

Chapter 1 presented Euclidean geometry alongside analytic geometry in the
Euclidean plane using Cartesian coordinates. Such a familiar mapping needed
no introduction. By contrast, Chapter 11 illustrated how projective spaces dif-
fer from affine spaces but gave no hint to how one could perform computa-
tion in projective spaces. Such an accompanying analytic geometry requires
assigning coordinates to points and other objects—the topic of this chapter.
Homogeneous coordinates have been discovered four times independently—
by Bobillier, Plücker, Feuerbach, and Möbius [19]. Chapter 13 discusses
Möbius’s version, which remains interesting in its own right. The first known
notes by Möbius on barycentric calculus date from 1818 [29, p. 49]. It is worth
quoting Boyer’s impression.

The year 1827 is of considerable importance in the history of
analytic geometry in Germany [. . . ]. It is sometimes said that
Descartes arithmetized geometry, but this is not strictly correct.
For almost two hundred years after his time coordinates were in
essence geometric. [. . . ] The arithmetization of coordinates took
place not in 1637 but in the crucial years 1827–1829. [19, p. 242]

12.1 The Projective Line

The main observation needed to assign coordinates to points on the projective
line P1 relies on embedding the line in a plane and observing that there is a
one-to-one correspondence between points on P1 and lines passing by a point
not incident to P1.

Consider embedding the projective line P1 in a plane parameterized by
(x,w) and colocating P1 with the line w = 1. Each point in P1 can be
captured by a line passing by the origin.

The mapping function is that of intersection. A line is mapped to its in-
tersection with the projective line. The mapping is one-to-one because each
line passing by the origin intersects P1 in exactly one point. Because the line
w = 0 intersects P1 at its ideal point, the ideal point is represented by the line
w = 0.

x

w

id
ea

lp
oi

nt

P1

Homogeneous Coordinates of Points

To determine the coordinates of a point A on P1, we choose the coordinates of
an arbitrary point lying on the line passing by A and the origin. The existence
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of multiple representations for one element in a set is already familiar from
the elements of Q; a rational number can be captured by an infinite number
of quotients. Likewise, the homogeneous coordinates of any point on the line
passing by the origin and a point on P1 are suitable coordinates.

Just as it is often desirable to find a canonical representation for a rational
number—with the constraints that the denominator be positive and that the
numerator and the denominator be relatively prime (have no common divisor
other than unity), it is also often desirable to find a canonical representative
for each element on the projective line. The canonical representative of affine
points will be a point on the line w = 1. The canonical representative of
the ideal point will be the point (1, 0). Thus, the canonical representative for
an affine point can be found by using (x/w, 1) for (x,w) and the canonical
representative of the ideal point is found by using (1, 0) for (x, 0) with x 6= 0.
Determining a canonical representative is referred to as a normalization step.

x

w

canonical representatives

If a point on the projective line is represented by the tuple (x,w), an arbi-
trary other tuple (kx, k), k 6= 0, is an equally suitable representative. This is
true for both affine (w 6= 0) as well as for the ideal (w = 0) point. Notice in
particular the lack of restriction on the sign of k; it may be positive or negative.

Point Equality on the Projective Line

Determining whether two pairs (x1, w1) and (x2, w2) represent the same point
amounts to checking whether the determinant

x1 x2

w1 w2

vanishes, or whether x1w2 = x2w1. We can now sketch a class for a point on
the projective line using homogeneous coordinates.

template<typename NT>

class Point P1
{

NT x, w;
public:

Point P1(const NT& x = 0, const NT& w = 1) : x(x), w(w) {}

const NT hx() const { return x; }
const NT hw() const { return w; }

bool operator==(const Point P1<NT>& p) const {
return determinant( x, w, p. x, p. w) == 0;

}
};

The term homogeneous hints at several properties of homogeneous coordi-
nates:

1. The ideal point is treated no differently than any affine point. Indeed, as
was seen in Chapter 11, projective transformations may map the ideal
point to an affine point and an affine point to the ideal point.
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2. No special meaning is attributed to the w value within projective geo-
metry; there is homogeneity between x and w.

3. As we shall shortly see, a homogeneous equation in the first degree (e.g.
Xx + Y y +Ww = 0 in P2 or Xx + Y y + Zz +Ww = 0 in P3, for
given constants X , Y , Z, and W ) represents a linear subspace. This is
also true in P1, but the outcome is rather trivial: Xx + Ww = 0 for a
given pair of constants X and W is still just a point.

Because projective geometry acts as a kind of augmented Euclidean geo-
metry with a special topology, it is clear that we can easily map points from
Euclidean to projective spaces. But since the set of projective points is a su-
perset of the set of Euclidean points, the converse mapping is by necessity
ill-defined. Were we to be studying projective geometry on its own, we would
have no need to perform a mapping back to Euclidean spaces and the difficulty
of mapping would not arise.

Yet in computing we are usually interested in projections when implement-
ing visualization applications. The image we render is best described as a sub-
set of the Euclidean plane E 2. For this reason we shall attribute special status
to the w variable and will refer to it as the homogenizing variable. We will
always use a pair (x,w) with the knowledge that we will eventually map the
outcome of the computation from projective to Euclidean space. If one is to
remain theoretical and not develop systems, one would have no need ever to
move between Euclidean and projective spaces. In practice one needs to do
such moves and distinguishes between x and w.

Segments and the Nonseparability of the Projective Line

We can now revisit the nonseparability of the projective line discussed in
§ 11.1. Suppose that in analogy with the classes for points and segments
in Euclidean (Point E1, Segment E1) and spherical (Point S1, Segment S1)
geometries, we attempt to define in addition to Point P1 a class Segment P1
that captures a segment (or simply an interval) on the projective line.

x

w

Figure 12.1
The nonseparability of the pro-
jective line makes it impossible to
define objects of type Segment P1.

With homogeneous coordinates, the points on the projective line are repre-
sented using a nonzero vector in the Euclidean plane. We look at the question
of nonseparability in the three different ways shown in Figure 12.1. On the
left of the figure we think of the vectors as normalized such that the magnitude
of each vector is unity, but signs are also irrelevant and so any two antipo-
dal points also capture the same point. Thus, the projective point that can be
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represented by either of the two squares and the projective point that can be
represented by either of the two boxes define two segments, each of which is
shown using two (same-shade) arcs on the circle.

Consider instead that we initially do not normalize the vectors representing
the two projective points (still shown as a box and a square in the figure at the
center). Two segments can join one point to the other. If we now consider
a normalization step in which we project on the line w = 1, either of the
two distinct segments (in the two shades) is potentially the segment that we
intended to capture. One crucial distinction between the two segments is now
evident: One of the two segments includes the ideal point on the projective
line (marked as a cross on either end of the line) whereas the other consists of
affine points only.

Since any two points that are colinear with the origin capture the same
projective point, we can also consider the mapping between a line in the plane
and a point in the projective line. As shown on the right of Figure 12.1, two
such lines in the plane, which represent two points in the projective line, define
not one, but two segments on the projective line.

Also because the projective line is topologically a circle, a point on the
projective line does not split it into two parts. Even after cutting the projective
line at a point R, we would be able to move unimpeded between two arbitrary
other points A and B on the line. This suggests that it makes no sense to
attempt implementing a predicate such as

template<typename NT>

bool
are on same side(Point P1<NT> R, Point P1<NT> A, Point P1<NT> B);

that would determine whether both A and B lie on the same side of R; R does
not split the projective line into two parts.

x

w

A

BR

Just as we embed P1 in E 2 to assign coordinates, we will also embed P2

in E 3 and P3 in E 4. The main objective from looking at P1 (even though
P1 is unlikely to arise in practice) is to make it easier to be convinced that it
will also not make sense to attempt defining predicates for reporting whether
two points lie on the same side of a hyperplane in P2 or P3. The trouble
is that one-dimensional geometries do not make it clear that a point is also a
hyperplane, but the notion that a point in one-dimensional geometries acts as
both a point and a hyperplane will be evident in a much more pragmatic way
in Chapters 28 and 29.

12.2 The Projective Plane

We move one dimension higher and seek a way to assign coordinates to pro-
jective points and lines on the projective plane P2. If P2 is embedded in three
space and if an arbitrary point O not incident to the plane is chosen, then the
lines passing by O are in one-to-one correspondence with the points on P2.
Also, the planes passing by the same point are in one-to-one correspondence
with the lines on the projective plane. We can verify that the topology of the
projective plane discussed in Chapter 11 is indeed respected. There is only one
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plane parallel to the projective plane and passing by O; that plane captures the
ideal line. But there is an infinite number of lines passing by O and parallel to
the projective plane; each such line captures one ideal point.

Just as with the projective line, it is convenient to choose O at the origin
and to position the projective plane at the planew = 1 in a space parameterized
by a triple of axes (x, y, w).

Homogeneous Coordinates of a Point in the Projective Plane

An arbitrary point on the line passing by a projective point A and the origin
is a suitable representative for A. The canonical representative of an affine
point with homogeneous coordinates (x, y, w) is (x/w, y/w, 1). The canonical
representative of an ideal point is (x, y, 0), either such that x2 + y2 = 1, or
more simply by setting either x or y to 1 and thus choosing a point on a square
centered at the origin and lying in the xy-plane.

x

yw

w
=

1

Point Equality in the Projective Plane

Two points (x1, y1, w1) and (x2, y2, w2) in P2 are equal if there exists a k 6= 0
such that x1 = kx2, y1 = ky2, and w1 = kw2. If we think of the coordi-
nates as those of vectors in 3D, then asking whether two points are not equal
amounts to asking whether the two vectors are linearly independent, which can
be verified by asking whether the matrix x1 x2

y1 y2
w1 w2


has rank 2. In turn, this condition holds if and only if all three determinants

x1 x2

y1 y2
,

x1 x2

w1 w2
,

y1 y2
w1 w2

do not simultaneously vanish. Overloading the equality operator on a generic
class Point P2 leads to

x

yw

24 x1

y1

w1

35
24 x2

y2

w2

35

template<typename NT>

bool
Point P2<NT>::operator==(const Point P2<T>& p) const
{

return (this == &p) ||
are dependent( x, y, w, p. x, p. y, p. w);

}

Homogeneous Coordinates of a Line in the Projective Plane

If the projective plane is embedded in 3D space, a line in P2 can likewise be
captured by a plane passing by the originO [87]. That plane is in turn captured
by its normal vector; because we know that it passes by the origin, the constant
d in § 3.4 is zero. If the normal vector to the plane is

−→
N (X,Y,W ), then a
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point P (x, y, w) in 3D space lies on the plane iff N · (P −O) = 0. The same
condition holds for a projective point to coincide with a projective line

N · (P −O) = 0 =⇒ L · P = 0 =⇒
[
X Y W

]
·

 x
y
w

 = 0.

This homogeneous equation makes it evident that neither scaling the coeffi-
cients of the line (the normal vector in 3D) nor scaling the coordinates of the
point matters. For the equation to be meaningful, neither the three line coeffi-
cients nor the three point coordinates can simultaneously vanish. IfX = 0 and
Y = 0 (but W 6= 0), the plane is parallel to the plane w = 1 and the projective
line captured is the ideal line.

w

l

x

y

w
=

1 −→
N

It is easy to derive the coefficients of the normal vector by appealing to the
equation for the coplanarity of four points in 3D [Eq. (3.2)]. The condition
for the point P (x, y, w) to be coplanar with the three points P1(x1, y1, w1),
P2(x2, y2, w2), and O(0, 0, 0) is

x 0 x1 x2

y 0 y1 y2
w 0 w1 w2

1 1 1 1

= 0.

But we can be more direct and seek the condition for three vectors not to span
3D space (or for the three to lie in the same subspace), which leads to

x x1 x2

y y1 y2
w w1 w2

= 0.

Expanding either way, we get

x
y1 y2
w1 w2

− y
x1 x2

w1 w2
+ w

x1 x2

y1 y2
= 0

=⇒ X =
y1 y2
w1 w2

; Y = − x1 x2

w1 w2
; W =

x1 x2

y1 y2
.

This allows us to sketch the implementation of a class Line P2 for a pro-
jective line.

template<typename T>

class Line P2
{
private:

T X, Y, W; // Xx+Yy+Ww=0
public:

Line P2() : X(1), Y(0), W(0) {}
Line P2(const Point P2<T>& source, const Point P2<T>& target)
{

X = + determinant(source.hy(), source.hw(), target.hy(), target.hw());
Y = − determinant(source.hx(), source.hw(), target.hx(), target.hw());
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W = + determinant(source.hx(), source.hy(), target.hx(), target.hy());
}

bool is incident(const Point P2<T>& p) const
{

return inner product( X, Y, W, p.hx(), p.hy(), p.hw()) == 0;
}
...

};

The preceding code does not guard against the two points used to create a
line not being distinct (defined by linearly dependent vectors). One could take
a run-time penalty and throw an exception if the line is initialized to the zero
vector.

struct Maldefined Line P2 : public std::runtime error {
Maldefined Line P2(const std::string& s) : std::runtime error(s) {}

};

template<typename NT>

class Line P2
{

Line P2(const Point P2<NT>& P1, const Point P2<NT>& P2)
{

...

NT zero(0);
if( X == zero && Y == zero && W == zero )

throw Maldefined Line P2(””);
}

};

Alternatively, one could write an assertion that is subsequently turned off
at the conclusion of development.

Notice that because the condition for two points to be coincident is pre-
cisely the test for the three coefficients to vanish simultaneously, we perform
the test after computing the coefficients rather than call the equality operator
before computing them.

Intersection of Two Projective Lines

Interpreted in Euclidean 3D space, constructing a line passing by two points is
equivalent to finding the normal to two vectors. The converse problem, finding
the point of intersection of two lines, is also answered by finding the normal to
two vectors.

The first problem sought the line joining two points. The second seeks the
meeting point of two lines. If we consider that the coefficients of the two lines
are the normal vectors to the corresponding planes, then the meeting point is
the line simultaneously orthogonal to the two planes—a computation reminis-
cent of computing the “cross product.”

w

x

y

w
=

1
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The coordinates of the point of intersection, up to a (positive or negative)
factor, can be found by code such as the following. The assertion confirms
that the projective point constructed is sensible (its three components do not
simultaneously vanish, confirming that the two given planes were distinct).

template<typename T>

Point P2<T>

intersection(const Line P2<T>& l1, const Line P2<T>& l2)
{

T detx = + determinant(l1.Y(), l1.W(), l2.Y(), l2.W());
T dety = − determinant(l1.X(), l1.W(), l2.X(), l2.W());
T detw = + determinant(l1.X(), l1.Y(), l2.X(), l2.Y());

assert((detx != 0) || (dety != 0) || (detw != 0));

return Point P2<T>(detx, dety, detw);
}

Duality

Observing that meeting two lines (intersecting them) and joining two points
(constructing a line from them) are computationally identical leads us to an
intriguing property of projective geometry, the duality of points and lines.

Suppose we are given two points A and B and are asked to form the line
l passing by A and B. The procedure above (finding the plane carrying O, A,
and B) has a dual interpretation. Instead of considering that A and B are two
points, we take them instead to be two normal vectors

−→
A and

−→
B .

−→
A in turn

defines a line l−→
A

that is the intersection of the plane w = 1 with the plane
whose normal vector is l−→

A
—and likewise for l−→

B
. The two planes l−→

A
and l−→

B
intersect (or meet) at a point l−→

A
∩ l−→

B
. If we now interpret this point as a vector

and assume that the vector is a normal to a plane, then the plane passes by A
and B. The normal (and the plane) also precisely defines the line passing by
A and B that we were seeking!

x

yw

A

B
l

−→
A

−→
B

l−→
B

l−→
A

Computationally, duality makes it possible to solve two problems with one
implementation. To do so one manipulates the problem statement, swapping
the words “point” and “line” and swapping also “meet” and “join.” So “find
the line that joins two points” becomes “find the point that meets two lines.”
Exercise 12.4 pursues this theme.

Coordinates of Ideal Points and the Ideal Line

Homogeneous coordinates make no distinction between affine and ideal points
or affine lines and the ideal line. If the ideal line is illustrated as some large
circle encompassing the plane, the coordinates (x, 0, 0) for any x 6= 0 capture
one ideal point, namely, the one lying at the intersection of the x-axis and the
ideal line. Likewise, the point infinitely far along the y-axis has coordinates of
the form (0, y, 0) for any y 6= 0. Just as the equation of the y-axis is x = 0 and
that of the x-axis is y = 0, the ideal line has the equation w = 0.

x

y

(0, y, 0)

(x, 0, 0)
(0, 0, w)

w = 0
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12.3 The Projective Space

We proceed largely in analogy with the discussion on the projective line and
plane.

A Point in Projective Space

Two projective points P1(x1, y1, z1, w1) and P2(x2, y2, z2, w2) are equal if the
matrix [

x1 y1 z1 w1

x2 y2 z2 w2

]T
has rank strictly less than 2, which holds if and only if the following six deter-
minants simultaneously vanish:

x1 x2

y1 y2
,

x1 x2

z1 z2
,

x1 x2

w1 w2
,

y1 y2
z1 z2

,
y1 y2
w1 w2

,
z1 z2
w1 w2

A Plane in Projective Space

Four points are needed to define a hyperplane in affine 4D space, and the condi-
tion for the coplanarity of five points (one being the origin) is for the following
determinant to vanish:

x 0 x1 x2 x3

y 0 y1 y2 y3
z 0 z1 z2 z3
w 0 w1 w2 w3

1 1 1 1 1

= 0.

or we ask more directly for the condition under which four vectors lie in the
same hyperplane in 4D:

x x1 x2 x3

y y1 y2 y3
z z1 z2 z3
w w1 w2 w3

= 0.

This homogeneous form for the equation of a plane, which is credited, along
with its analog in one lower dimension, to Cayley in 1843 by Boyer and
Merzbach [20], identifies the factors of a plane α(X,Y, Z,W ) on which a
point P (x, y, z, w) lies:

Xx+ Y y + Zz +Ww = 0.
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Hence, we can now write

X = +
y1 y2 y3
z1 z2 z3
w1 w2 w3

,

Y = −
x1 x2 x3

z1 z2 z3
w1 w2 w3

,

Z = +
x1 x2 x3

y1 y2 y3
w1 w2 w3

,

W = −
x1 x2 x3

y1 y2 y3
z1 z2 z3

.

12.4 A Line in the Projective Space

The condition for four points (xi, yi, zi, wi), i = 1, . . . , 4, in projective space
to be coplanar can be stated as the vanishing of the following determinant:

x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

= 0 =⇒ + x1

y2 z2 w2

y3 z3 w3

y4 z4 w4

− y1

x2 z2 w2

x3 z3 w3

x4 z4 w4

+ z1

x2 y2 w2

x3 y3 w3

x4 y4 w4

− w1

x2 y2 z2
x3 y3 z3
x4 y4 z4

= 0.

To show that the final forms are elementary, we proceed to expand in detail:

=⇒ + x1

[
y2

z3 w3

z4 w4
− z2

y3 w3

y4 w4
+ w2

y3 z3
y4 z4

]
− y1

[
x2

z3 w3

z4 w4
− z2

x3 w3

x4 w4
+ w2

x3 z3
x4 z4

]
+ z1

[
x2

y3 w3

y4 w4
− y2

x3 w3

x4 w4
+ w2

x3 y3
x4 y4

]
− w1

[
x2

y3 z3
y4 z4

− y2
x3 z3
x4 z4

+ w2
x3 y3
x4 y4

]
= 0

=⇒ +
x1 w1

x2 w2
· y3 z3
y4 z4

+
y1 z1
y2 z2

· x3 w3

x4 w4

− y1 w1

y2 w2
· x3 z3
x4 z4

− x1 z1
x2 z2

· y3 w3

y4 w4

+
x1 y1
x2 y2

· z3 w3

z4 w4
+

z1 w1

z2 w2
· x3 y3
x4 y4

= 0. (12.1)
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This equation makes it possible to interpret the original 4× 4 determinant
not as the condition under which four points are coplanar, but as the condition
under which two lines L and M intersect (including the possibility of their
meeting at an ideal point).

If L is defined by (P1, P2) and M by (P3, P4), we can discard the points
and argue that the lines are instead defined by the six 2 × 2 determinants in
Eq. (12.1). The condition for L to be incident to M can then be more conve-
niently written as

+LxwMyz + LyzMxw − LywMxz − LxzMyw + LxyMzw + LzwMxy = 0.

Since Lxx = 0 and Lxy = −Lyx (and likewise for the other point coordi-
nates), the six numbers Lxy, Lxz, Lxw, Lyz, Lyw, Lzw are the only six 2 × 2
determinants one can usefully derive from the point coordinates. These six
numbers, which define a line L up to a constant scalar factor, are called its
Plücker coordinates [94, 28].

x y z w

0 xy xz xw

−xy 0
0

0
−xz

−xw

−yz

x

y

z

w

yz yw

zw

−yw −zw

That six numbers are used to define a line—even if restricted to affine
ones—may seem to clash with the established notion that four suffice (say the
coordinates of the intersection with two parallel planes). The six numbers are
in fact doubly redundant. One redundancy is carried over from the homogene-
ity of the pair of points defining the line. Because multiplying the coordinates
of one or both points by a scalar factor yields a different representation for the
same points, the six determinants also continue to capture the same line under
multiplication by a (nonzero) scalar. Each determinant is effectively the slope
of the line in a given hyperplane in 4D. The second redundancy arises because
a line is incident to itself:

+ LxwLyz + LyzLxw − LywLxz

− LxzLyw + LxyLzw + LzwLxy = 0,

which yields a second constraint on the six coordinates for each of the two
lines:

+ LxwLyz − LywLxz + LxyLzw = 0.

Recall from § 12.3 that all six determinants simultaneously vanish if and only
if the two points coincide, but then we cannot hope in any case to define a line.

Coordinates of Ideal Points and the Ideal Plane

Intersecting the ideal planew = 0 with any projective line yields an ideal point.
The w-coordinate of the resulting point will be 0, signaling that it is an ideal
point. The same ideal point would result from the intersection of the given
line with another parallel to it—or also from the intersection of two distinct
planes passing by the given line with the ideal plane. The intersection of the
x-axis with the ideal plane is the ideal point with coordinates (x, 0, 0, 0) for
any x 6= 0, and so on.

x

y

z (x, 0, 0, 0)

(0, y, 0, 0)

(0, 0, z, 0)

(0, 0, 0, w)

w = 0
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12.5 Transformations in the Projective Line

Transforming Points

The set of projective transformations on projective points is the set of transfor-
mations achievable by multiplying a real-valued matrix M

M =
[
p00 p01

p10 p11

]
by the coordinates of a point represented as a vector:

P ′ = MP =
[
p00 p01

p10 p11

] [
x
w

]
=

[
p00x+ p01w
p10x+ p11w

]
.

To see the power of projective transformations compared to affine transfor-
mations it suffices to examine the effect of a matrix such as

M =
[

0 −1
1 0

]
on the three canonical points (§ 12.8) P0(0, 1), P1(1, 1), and P∞(1, 0). The
three points map to P ′0 = MP0 = (−1, 0), P ′1 = MP1 = (−1, 1), P ′∞ =
MP∞ = (0,−1). Since (−1, 0) coincides with (1, 0) on the projective line,
the effect of M is to swap P0 and P∞. Transformations in the projective line
(and in higher dimensions) will, in general, map affine points to ideal points
and will map ideal points to affine ones.

Scale

We start by positing that either of the two transformation matrices

S1 =
[
k 0
0 1

]
, S2 =

[
1 0
0 1/k

]
would effect a scale in the projective line P1. We wonder what effect either
matrix has on the set of points colinear with the origin if P1 is embedded in
the Euclidean plane. Let us start from the canonical representative (x, 1) of a
projective point. This point will in practice have any coordinates (wx,w), w 6=
0. The effect of applying S1 on that point is illustrated by the horizontal arrow
in the figure, leading to a point with coordinates (kwx,w). In E 2 the effect of

(wx, w/k)

(wx, w)(x, 1)
(kwx, w)

(kx, 1)

S2 would have been different—illustrated by the vertical arrow in the figure—
but the effect of S2 is identical to that of S1 if considered in the projective line
P1. As we can confirm by normalizing, the resulting canonical representative
is (kx, 1) regardless of whether S1 or S2 was applied.

Translate

We consider next the effect of the transformation matrix

T =
[

1 t
0 1

]
.
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Once again we take the arbitrary point in the plane to be (wx,w) such that
its canonical representative is (x, 1). The effect of T—as perceived in E 2—is
then (wx+ wt,w). Normalizing, we obtain (x+ t, 1).

(wx, w)(x, 1)
(wx + wt, w)

(x + t, 1)

Perspective

If all we wanted to do was to scale and to translate, we would have been con-
tent to stay in Euclidean space—homogeneous coordinates by themselves have
no obvious appeal (but see Chapter 16). The compelling reason for moving to
homogeneous coordinates and to projective geometry is the ability to map be-
tween the affine point and the ideal point. Consider applying the matrix

P =
[

1 0
p 1

]
to a projective point. We can no longer take the point to have the coordinates
(wx,w) since the implicit constraint that w 6= 0 presumes that the point is not
ideal. Under scale and translation the ideal point maps to itself, but now it will
map to an affine point.

(x, w)

(x, px + w)

We take the point to be the more general (x,w), xw 6= 0 instead. The
outcome of applying P is the point (x, px + w). Two interesting questions
immediately come up: Which point maps to the ideal point and to which point
does the ideal point map? To answer the first we write px + w = 0. This is
simply the equation of a line in E 2 with slope w/x = −p. But that confirms
that the ideal point does not map to itself—for if w = 0, it must be the case
that x = 0, but we disallow the origin of E 2, or p = 0, and then we’re just
applying the identity map.

To answer the second question (find the image of the ideal point), we start
from a point (x, 0), x 6= 0. Applying P , we get (x, px). That point is also the
equation of a line in E 2—one with slope p. slope = p

slope = −p

12.6 Transformations in the Projective Plane

Transforming Points

A point P (x, y, w) in the projective plane is likewise transformed by a ma-
trix M

M =

 p00 p01 p02

p10 p11 p12

p20 p21 p22

 ,

leading to

P ′ = MP =

 p00 p01 p02

p10 p11 p12

p20 p21 p22

  x
y
w

 .
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Translation

Consider using the matrix

M =

 1 0 p02

0 1 p12

0 0 1


to transform the point P = [ wx wy w ]T . P is a point on the projective
plane, which is embedded in Euclidean three space for the purpose of perform-
ing the transformation.

If, following the transformation M , the projective point P ′

P ′ = MP =

 1 0 p02

0 1 p12

0 0 1

  wx
wy
w

 =

 wx+ wp02

wy + wp12

w


is mapped back to the Euclidean plane, the coordinates are seen to be (x +
p02, y + p12). Such a transformation matrix is termed a translation matrix
because the effect it induces on points on the projective plane, when mapped
to the Euclidean plane following division by w, is seen to be a translation.
Observe that the coefficients p02 and p12 are determined irrespective of the
value of w for a given point.

Rotation

One can likewise verify that the effect of the matrix

M =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


on E 3 or P2 is a rotation about the w-axis or about the origin.

Uniform Scale

Either of the following two matrices effect a uniform scale on Euclidean points:

M1 =

 s 0 0
0 s 0
0 0 1

 , M2 =

 1 0 0
0 1 0
0 0 1/s

 .
The effect of M2 is division of a point’s w-coordinate by s. Subsequently
dividing by the value w = 1/s produces the desired magnification by a scale s.

Nonuniform Scale

A nonuniform scale is effected if the two scales sx and sy are not equal:

M =

 sx 0 0
0 sy 0
0 0 1

 .
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Perspective

If the matrix M

M =

 1 0 0
0 1 0
p20 p21 1


is used to transform the point P = [ x y w ]T , the resulting point is

P ′ = MP =

 1 0 0
0 1 0
p20 p21 1

  x
y
w

 =

 x
y

p20x+ p21y + w

 .
The resulting projective point P ′ is an affine point only if (p20x+ p21y +

w) 6= 0. But (p20x+p21y+w) = 0 is itself the equation of a plane that passes
by the origin in E 3 and is therefore a projective line in P2. Thus, points lying
on that line map to the ideal line.

Conversely, a point on the ideal line has the form (x, y, 0) and maps to
(x, y, p20x + p21y). One sees again that a necessary and sufficient condition
for the matrix M above to map ideal points to (other) ideal points is for p20 =
p21 = 0. If that is not the case, the ideal line maps to the affine line with points
of the form [x/(p20x + p21y), y/(p20x + p21y)]. That this equation does not
look like that of a line is not surprising; its form exhibits that the ideal point in
the direction (x, y) maps to such a point.

Transforming Lines

We are given a line L[X,Y,W ]T in P2 and we wish to compute the line
L′[X ′, Y ′,W ′]T resulting from applying the projective map M to L. If the
set of points on L are represented by the point P [x, y, w]T , then L ·P = 0, but
let us avoid dot products and write LTP = 0.

Projective transformations evidently preserve incidence: If a point P is
incident to a line L before applying a transformation M , then it must be the
case that P ′ = T (P ) is also incident to L′ = T (L), where the function T
applies the transformation matrix M . We can write

LTP = 0 =⇒ LTM−1P ′ = 0,

but since P ′ is incident to L′, we know that L′TP ′ = 0, so we have [94]

L′T = LTM−1 =⇒ L′ = M−TL.

If M is an orthogonal matrix, then its inverse is also its transpose

M−T = M, L′ = ML.

If M is an arbitrary (non-orthogonal) matrix,

M−T 6= M

and so, compared to transforming a point, transforming a line also requires
computing a matrix inverse.
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12.7 Transformations in the Projective Space

Transforming Points

Predictably, a point P (x, y, z, w) in P3 is transformed by a matrix M :

M =


p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33

 ,

leading to

P ′ = MP =


p00 p01 p02 p03

p10 p11 p12 p13

p20 p21 p22 p23

p30 p31 p32 p33



x
y
z
w

 .

Types of Projective Transformations in Space

The arguments for the plane in § 12.6 apply equally well to the projective space.
The matrix 

1 0 0 p03

0 1 0 p13

0 0 1 p23

0 0 0 1


translates by the vector [ p03 p13 p23 ]T .

The matrices

Mθ =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 ,

Mφ =


cosφ 0 sinφ 0

0 1 0 0
− sinφ 0 cosφ 0

0 0 0 1

 ,

Mψ =


cosψ − sinψ 0 0
sinψ cosψ 0 0

0 0 1 0
0 0 0 1


effect a rotation with the angles θ, φ, and ψ about the x-, y-, and z-axes,
respectively.

The matrix 
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 s


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effects a scale by the factors sx/s, sy/s, sz/s.
Finally, the matrix 

1 0 0 0
0 1 0 0
0 0 1 0
p30 p31 p32 1


maps the ideal plane to the affine plane with points of the form(

x

p30x+ p31y + p32z
,

y

p30x+ p31y + p32z
,

z

p30x+ p31y + p32z

)
.

Transforming Planes

If a plane in P3 is given by π[X,Y, Z,W ]T and we wish to compute the plane
π′ = T (π) where the transformation T is captured by a matrix M , then, as in
P2, we use the transpose of the inverse of M :

π′ = M−Tπ.

The same equation is true for directions (normalized normal vectors), but we
avoid declaring directions in projective geometry; we should be able to mul-
tiply a direction by an arbitrary nonzero constant, such as −1, and obtain the
same direction in projective space, yet clearly a multiplication by −1 should
also reverse the orientation of a direction. These issues will be solved in Chap-
ter 14 when separability will be recovered for projective geometry.

12.8 Canonical Projective Points

Were we to be doing synthetic geometry in two or three dimensions (as Euclid
would have), we would not put any particular significance to one point com-
pared to the others. Assigning Cartesian coordinates to points in the plane
requires establishing a point (the origin) and two vectors (the basis) and as-
signing a particular significance to the resulting three points (the origin and the
two points resulting from its addition with the two basis vectors).

These three points figure prominently in the geometry that we subsequently
practice. Yet often, as will be argued in Chapter 17, this is undesirable. But the
three canonical points of E 2 or the four canonical points of E 3 are frequently
helpful. The column vectors of a transformation in E 2, for instance, offer a
direct reading of the vectors to which the basis vectors map.

A natural question to ask is to wonder whether there are any such canonical
points in projective geometry. If there are, we also would wonder how many
such points there are in each geometry. If there are n + 1 canonical affine
points in an n-dimensional Euclidean geometry, the added power of projective
transformations (modifying parallelism) already hints that there ought to be
more than n+ 1 canonical points in n-dimensional projective geometry.

The number of points is directly associated with the fundamental theo-
rem of projective geometry (§ 11.1). There we noticed that n + 2 mappings
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between point pairs are needed in Pn. It is customary to take the points
(1, 0), (0, 1), and (1, 1) as the fundamental points in P1; the points (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (1, 1, 1) as the fundamental points in P2; and the points
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (1, 1, 1) as the fundamental
points in P3 [26, 79].

Just as with Euclidean transformations, the coordinates of the points to
which n + 1 of the canonical points of a projective space map can be read
directly as the column vectors of the projective transformation. The canonical
points also serve in the opposite direction. We do not need to implement a
routine that maps an arbitrary four points to another arbitrary four points; it is
sufficient to implement a function that finds the mapping from the four canon-
ical points to an arbitrary other quadruple. An arbitrary mapping can then be
found by using the canonical mapping twice. Inverse and matrix composition
would then complete the routine.

12.9 Planar Projection

We are finally ready to produce 2D images of 3D scenes. It is clear that if we
were to seek a function from E 3 to E 2 that executes that mapping, the function
will always leave something to be desired.

• Points at infinity project to vanishing points, yet E 3 does not include
points at infinity.

• Points as distant from the view plane as the observer also project to
points at infinity. But again the image plane E 2 does not include such
points.

A mapping could be defined, but due to these weaknesses, the model would
remain tenuous. As is clear from Chapter 11, we must instead pass through
projective spaces. The mapping function, or the graphics pipeline, will consist
of four functions:

E3 P 3 P 3 P 3 P 3 E3 E2M V P D+1 \z

We consider each of the mapping functions:

1. Since P3 is a superset of E 3, the first function (labeled “+1”) sim-
ply consists of finding affine points in P3 that represent the Euclidean
points. Each Euclidean point (x, y, z) is mapped to the canonical repre-
sentative of a projective point (x, y, z, 1).

2. The functions M , V , and P effect the modeling, viewing, and perspec-
tive transformations.

3. D returns from projective space P3 to Euclidean space E 3. We assume
for now that the points mapped are affine.

4. \z maps from E 3 to E 2 by simply ignoring the z value. (In practice
computing visibility does rely on the z value.)
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We describe an implementation of the pipeline using a function object.
Function objects, or functors, are described following the source code for the
first example. We leave optimization to a distinct stage of development and
are only concerned at this time about the correctness of the system. A main
focus will be to identify the type of each object at the different stages of the
graphics pipeline. For clarity the pipeline is presented as a concrete, not a
generic, function object.

class Pipeline
{

const Transformation P3d T;
const Perspective divide d my perspective divide;
const Project on xy d my projection;

public:
Pipeline( const Transformation P3d& T ) :

T( T), my perspective divide(), my projection() {}

Point E2d operator()( const Point E3d& P1 )
{

Point P3d P2 = Point P3d( P1 );
Point P3d P3 = T( P2 );
Point E3d P4 = my perspective divide( P3 );
Point E2d P5 = my projection( P4 );
return P5;

}
};

An object of type Pipeline is initialized by passing it the combination of the
modeling, viewing, and perspective transformations. The constructor also cre-
ates a function object for performing perspective divide (division by w):

template<typename NT>

struct Perspective divide
{

Point E3<NT> operator() (const Point P3<NT>& p) const
{

return Point E3<NT>(
p.hx()/p.hw(),
p.hy()/p.hw(),
p.hz()/p.hw());

}
};

and another function object for projecting to E 2 (ignoring z):

template<typename NT>

struct Project on xy
{

Point E2<NT> operator() (const Point E3<NT>& p) const
{

return Point E2<NT>(p.x(), p.y());
}

};
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After an object of type Pipeline is created, it can be used as any other
object—it can, for example, be sent to other functions as a parameter. One
then has only to invoke the object as if it were a function and the operator() of
the object will be invoked. The member function operator(), which takes the
input to the pipeline and returns the final result, combines the four stages of
the pipeline. We turn our attention to the line

Point E3d P4 = my perspective divide( P3 );

which performs the perspective transformation proper.

Perspective Transformation

We assume that the viewer, or the center of perspectivity, is located at the ori-
gin of the coordinate system and is looking toward the negative z-axis. We
choose the negative z to keep the coordinate system after perspective as ex-
pected at the bottom left of the image. We also position the view plane, or film
plane, at the plane z = 1. To position the viewer at the origin, it is sufficient
to apply an orthogonal (affine) transformation (§ 4.7) before the perspective
transformation, so we focus here on the latter.

The perspective transformation is applied by projecting on an image plane.
The image, or projection, plane is positioned such that it is orthogonal to the
z-axis at z = −N , where N is some positive value. The x- and y-coordinates
of the projected point (x′, y′,−N) can be found by similar triangles:

x

y

z

(x, y, z)

(x′, y′,−N)

−
N

x′ = −N x

z
, y′ = −N y

z
.

In the interface adopted by OpenGL, the view volume is passed as six
scalar values describing two corners of the view volume on the image plane
as well as the location of the distant, or far, clipping plane. The viewer is
implicitly assumed to lie at the origin, and the view axis is implicitly assumed
to be the negative z-axis. The function glFrustum has the following interface:

void glFrustum(
GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near val, GLdouble far val )

x

y

z

2664
−1
−1
1
1

3775
2664

1
1
−1
1

3775

Both the near and far values are negative, but since it would be unwieldy to
force users of the API to recall that the view axis is the negative z-axis, these
two values are passed as positive z values and are negated internally by the
glFrustum function.

The canonical view volume after the projection transformation is a cube
with corners at (−1,−1, 1) and (1, 1,−1).

The desired matrix is [50]

M =


2N
R− L 0 R+ L

R− L 0

0 2N
T −B

T +B
T −B 0

0 0 −(F +N)
F −N

−2FN
F −N

0 0 −1 0

 .
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We confirm that M does indeed effect the desired mapping by finding the
points to which the corners of the view volume map. The two corners[

L B −N 1
]T

and
[
R T −N 1

]T
map to two corners of the canonical view volume. Also, the viewer at

 L
B
−N
1


 R

T
−N
1


x

y

z −N
−F[

0 0 0 1
]T

maps to an ideal point (w = 0):

M


L
B
−N
1

 =


−N
−N
−N
N

 ,

M


R
T
−N
1

 =


N
N
−N
N

 ,

M


0
0
0
1

 =


0
0

−2FN
F −N

0

 .
And so at the same time that the projection transformation takes the truncated
pyramid to a cube, it also takes an affine point (the viewer at the origin) and
maps it to an ideal point. This is not surprising; indeed all points lying at z = 0
map to ideal points and the plane z = 0 itself maps to the ideal plane.

Confusing an External for an Internal Segment

Now consider that we use the pipeline described above and generate a set of
images as a viewer approaches a given cylinder. We argued earlier that seg-
ments are not a projective notion and that we would not define a class segment.
Yet now we surely need some notion of segment to be able to render segments
on the PostScript device. The (incorrect, as we will see) solution we adopt is
to pass points (in the various geometries) through the pipeline and then render
segments as specified by the connectivity of the object rendered. Notice that
we are not taking any precautions when mapping back from P3 to E 3, and so
we could indeed end up dividing by zero. This is yet another problem we leave
out for the moment; we simply ensure not to render images when any of the
cylinder’s vertices has a zero depth.

As long as the cylinder is in front of the viewer, all is well. Already start-
ing in the second image, the viewer is so close that parts appear outside the
viewport. But discarding these portions is simple since we would only need to
clip in E 2.

Unusual diagonal lines start to appear in the last two images. These arise
because some edges of the cylinder pierce the z = 0 plane. The points where
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the edges and the plane intersect map to ideal points. We are in effect ren-
dering external segments as if they were internal segments (§ 11.2). We have
already encountered instances of internal segments that map to external ones
on pages 111 and 115.

But why does an external segment cross the image plane diagonally? If an
edge to the right and above the observer intersects the image plane, should it
not remain to the right and above the observer? To see what is happening we
appeal to the intuition we gained from spherical geometry in Chapter 9. If a
segment AB intersects the z = 0 plane and if A is in front and B is behind the
observer, then A will project to A′ and B will project to B′ on a small sphere
centered at the observer. Yet the nonseparability of projective geometry makes
it unable to distinguish between the front half and the back half of the sphere;
projective geometry effectively collapses the two sides of the sphere centered
at the observer! Points B′ and B′′ are confused and point B′′ is the closest
projective geometry can provide for a point on the Euclidean image plane as
the projection of B. When we now render an internal instead of an external
segment, it appears as a diagonal segment.

y

x

z

A

B

A′

B′

B′′

Inability to Clip in Projective Spaces

Clearly we need to clip. Discarding the portions of the scene behind the
observer and those outside the view frustum before projecting would yield
the planar projection we are seeking. Let us look once more at the graphics
pipeline and attempt to choose the stage at which we would discard features
behind the observer:

E3 P 3 P 3 P 3 P 3 E3 E2M V P D+1 \z

Since the two stages +1 and \z take points in a separable space (E 3) as
input whereas M , V , P , and D take points in a nonseparable space (P3), we
already know that clipping must be performed along with either +1 or \z.
Planes in P3 have one side, so it would make no sense to attempt to decide
whether the two endpoints of a segment lie on the same side of a plane in P3.

One can indeed define solutions for this w-wraparound problem [47] while
nominally staying in projective spaces, but distinguishing between signs of
w [107, 17] signals that the geometry we are tackling is of a different nature—




	

��

12.10 EXERCISES 141

the topic of Chapters 14 and 15. The best we can do if we are to stay within
projective geometry is to generate images on a one-sided projection plane.

We contemplate whether it would be possible to perform clipping after
returning from projective to Euclidean space.

E3 P 3 P 3 P 3 P 3 E3 E2M V P D clip \z
E3+1

But after D is performed it is too late; we would have already passed
through projective space and the front and back sides of the image plane (as
we shall shortly call them) would have collapsed. If we are to use projective
geometry, our only hope is to perform clipping on the sides of the view volume
in E 3 before we pass to P3 through +1. But the modeling transformation M
and the viewing transformation V are both affine, so there is no difficulty in
applying them while remaining in Euclidean space E 3. Conceivably, we could
clip after applying the modeling transformation.

E3 P 3 P 3 E3 E2M V P Dclip \z
E3 +1

E3 E3

Yet because the viewer would be at an arbitrary location, the viewing frus-
tum would have to be defined anew for each image. We prefer instead to wait
until the viewing transformation has been applied. The clipping planes then
only depend on the projection used.

E3 P 3 P 3 E3 E2M V P Dclip \z
E3 +1

E3 E3

Using the six sides of the frustum needed in this case is still unwieldy. That
four of them are not axis-parallel means that it is more expensive to determine
whether two points lie on the same side of a plane: Rather than make do with
two subtractions and sign tests, we must pay the price of dot products. The
canonical view volume obtained after P would be perfect. Its six sides are par-
allel to the coordinate system. Is there a way to achieve efficiency while per-
forming sane sidedness tests? We see how that is possible when we retake the
theme of projective geometry by recovering separability [104] in Chapters 14
and 15, but we first take a short break and discuss barycentric coordinates,
which exhibit a peculiar property of ideal points that will be illuminating.

12.10 Exercises

12.1 Provide your own ”artistic rendering” of the projective plane and indi-
cate on it each of the following points:

• (1,0,0)
• (0,1,0)

• (0,0,1)
• (1,1,0)

• (1,0,1)
• (0,1,1)

• (1,1,1)

12.2 What are the coordinates of the ideal point on the line l(a, b, c) lying in
the projective plane?
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12.3 If ψ(a, b, c, d) is a plane in projective space, what are the coordinates of
one point on the ideal line of ψ?

12.4 Compile and run the program labeled “duality” accompanying this text
and then modify the code so that the underlying geometry classes are
those for projective geometry rather than those for Euclidean geometry.
Write a few lines commenting on your experience. Is the code more ele-
gant after using projective objects? Why? Which of the two foundation
layers (Euclidean or projective) is more fitting for this application?

12.5 Modify the start-up code labeled “duality” so that inserting a point snaps
to another nearby point either when the point itself is near a line or when
the line dual of the point passes by two points that have already been
entered. After inserting n point-line duals, do you need to make O(n2)
checks before snapping?

12.6 Fake shadowing is a simple method for rendering the shadow of a 3D
object. A plane in space is declared the “ground” and scene objects
are projected on it. Each projected object is displayed as a set of gray
polygons. Given a point P , a plane Π, and a point L, the position of the
light source, determine the coordinates of the projection of P from L on
Π. Your derivation must handle the case when L is an ideal point.

12.7 Solve Exercise 12.6 and then modify the start-up code labeled “tank” to
generate shadows for the monoliths. What drawbacks do you observe in
this shadow-generation scheme?

12.8 The objective of this exercise is to be convinced that perspective projec-
tion may map ideal points to affine points and an ideal line to an affine
line.

Develop a system that generates a PostScript file showing the projection
of three long strips in a checkerboard pattern as shown in the adjacent
figure. Print the resulting file then confirm that the three vanishing points
are indeed colinear. Start from the class Postscript and the set of classes
in P3 in the directory geometry P3.

12.9 Desargues’s theorem (see Exercise 11.7) remains valid even if the two
triangles are sidewise parallel. Here is a restatement of the theorem for
the special case in which parallelism arises (which makes it possible
for someone drafting by hand to move gracefully from perspective to
parallel projection).

If ABC and A’B’C’ are two triangles with distinct vertices,
so placed that the line BC is parallel to B′C ′, CA to C ′A′,
and AB to A′B′, then the three lines AA′, BB′, and CC ′

are either concurrent or parallel [27].

Reimplement Exercise 11.7 using homogeneous coordinates. Was the

A
B C

A′

B′ C′

O

logic of your new implementation significantly simpler than the one us-
ing Cartesian coordinates?
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13 Barycentric Coordinates

Where is the center of gravity of a discrete set of masses? Möbius observed in
1827 that this elementary computation goes beyond its mere use for engineer-
ing, for the masses themselves can be used as coordinates that replace “parallel
coordinates” [70]. His new coordinate system, which he dubbed barycentric
or weight-centric, was, as mentioned at the start of Chapter 12, one instance of
four near-simultaneous discoveries of homogeneous coordinates.

Readers who wish to pursue the original manuscripts will find pointers
to translations of many fundamental works in Grattan-Guinness’s recent vol-
ume [43] (though, strangely, Möbius’ work is omitted; even more strangely, his
Barycentric calculus appears to have never been translated). After encounter-
ing ideal points, or points at infinity, in Chapters 11 and 12 through projection,
we encounter them once again in this chapter through algebraic manipulation.

13.1 Barycentric Coordinates in One Dimension

Consider putting two masses a and b at two distinct points A and B. The
masses can have arbitrary values, just so long as both do not simultaneously
vanish. This condition is necessary for otherwise it would make no sense to
attempt to determine the center of mass of a massless system. Either or both
masses may also be negative; the center of mass remains well-defined. We
can avoid considering the notion of antimatter by thinking instead of (posi-
tive or negative) electric charges and determining the resulting location of the
perceived charge.

We assume an ideal setting in which two infinitesimal objects can have
arbitrary masses. Alternatively, we may consider that the objects are not infin-
itesimal, but that their centers of mass lie at the points A and B. The center of
mass, also called the centroid or the barycenter, of the two point masses evi-
dently lies on the line defined by the two points. If the mass at one of the two
points vanishes, the barycenter lies at the other point. If both masses have the
same sign, the barycenter lies at a point along the segment AB that divides the
segment in the inverse proportion of the weights. This suggests that we can use
the masses (a, b) for coordinates. The coordinates of A become (1, 0), (2, 0),
or, indeed, (λ, 0) for any λ 6= 0. Likewise the coordinates of B are (0, λ). The
midpoint has coordinates (λ, λ).

AB

a

b
Suppose we start from two equal (positive) masses and wish to move the

barycenter to A. We can proceed by increasing the mass a indefinitely until b
is insignificant next to it. Or else we can simply set b = 0. It is easy to deduce
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the coordinates of points in the segment AB, but what about the remaining
point on the line AB? If one point, say B, has a negative charge b, then
that charge acts as a repulsive force and the barycenter is closer to A than
to B and outside the segment AB. And so the mapping between points in the

AB
ab

(Euclidean) plane parameterized by (a, b) and the center of mass becomes clear
as a relationship between the relative absolute magnitude of the two masses.
If the plane is divided into eight octants, then the points in the first and fifth
octants correspond to a barycenter in the interior of AB and closer to A than
to B. Points in the fourth and eighth octants also correspond to points closer
to A—those lying outside the segment AB on the carrying line, and so on.

If one of the two masses vanishes or if the two are equal, we are at three of
the lines separating the octants; the location of the barycenter is then obvious.
What if in the preceding experiment (reducing the value of b relative to a pos-
itive a), b approaches a in magnitude, but with opposite sign? We still ought
to be able to determine the barycenter, if only in the limit. As b approaches
−a from above, the barycenter moves farther from A and approaches the ideal
point, the point infinitely far on the lineAB on the side ofA (c.f. § 11.1). Even
though it becomes awkward to attempt to determine the centroid of a massless
system when a + b = 0, there is no difficulty in finding the limit. As long as
a + b 6= 0, we can normalize by dividing by the sum, yielding relative values
such that a + b = 1, but such normalization is no longer possible if the point
intended is the ideal point, fully mirroring the canonical representatives for P1

discussed in § 12.1.

AB

ab

Because the case of a = b = 0 is disallowed, the center of the coordinate
system does not map to a point on the line. Barycentric coordinates are homo-
geneous: Any two points that are colinear with the origin represent the same
barycenter (c.f. § 12.1). This suggests that we can take all colinear points pass-
ing by the origin—lines passing by the origin—and map each line to a point
on the line AB.

Continuing with updating b, what if b approaches −a from below? The
barycenter in that case is the ideal point on B’s side. The total mass/charge
of the system is now negative and we are in the dotted half of the circle in
the figure. Because the limit line is identical regardless of whether we reach it
using a clockwise or counterclockwise turn, there is only one ideal point. Each
line passing by the origin maps to its intersection with AB.

Using Weights

We have no need for some attractor to be able to calculate either the center
of mass or the inertia of a system, but positioning some planet or star with
gravity g somewhere in the plane (other than at A or B) makes it possible to
calculate the resultant of the two forces. The center of gravity of ag and bg
is then the location on the line where we can put the combined mass (a+ b)g
to replace—or, in the figure, to counteract—the two masses. If the planet is

AB P

b
a

a + b

︸︷︷︸︸︷︷︸
a b:

positioned at the origin of the plane above, for instance, then the barycenter
can be determined by intersecting the vector of the resultant with the line AB.
If the planet is sufficiently far for the forces to be parallel, then the barycenter
is likewise the location that acts as a counterweight.
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Pure Geometry

Yet a third way to determine the location of a point P (a, b) is possible. We
can discard any physical notion and remain purely geometric by erecting two
parallel lines through A and B that are not themselves parallel to AB. If two
points A′ and B′ that are b and a, respectively, from A and B and that lie on
opposite sides of the line AB are defined, then P is the intersection of the two
lines AB and A′B′.

A

B

P (a, b)

b

a

A′

B′

13.2 Barycentric Coordinates in Two Dimensions

Before moving to two dimensions, let us revisit the mapping from a pair of
coordinates to points on the line AB. We have been able to find an origin O in
some plane carrying AB such that O is equidistant from the two fundamental
points and such that the resulting coordinate frame is orthogonal. But is this
last condition truly necessary? As the figure suggests, any coordinate system
would indeed do. A point Q in the plane represents the point on AB that lies
at the intersection of AB and OQ. Q can be replaced by any other point that
is colinear with it and the origin O.

AB ab

Q

We are now given three noncolinear fundamental points and will study
whether it is possible to position weights at the three points such that the center
of mass will span the plane of the three points. We are looking for a point that
will serve as the origin and that is equidistant from the three points, so we
determine P , the intersection of the perpendicular bisectors of the segments
AB, BC, and CA, and we erect a perpendicular to the ABC plane from P .
Any point on the resulting line will do as origin O. If one of the three masses
is zero, then the setup is identical to the one previously seen. The barycenter
of three points can be determined in two stages; the barycenter of two of the
three points is first determined.

A

B

C

P

c

a

b

l

Any point in the plane can be parameterized by the coordinates (a, b, c).
As before, 3D points of the form (λa, λb, λc), λ 6= 0 capture the same 2D
point—the intersection of the line in 3D passing by that point and the origin O
with the plane ABC. The point P itself has coordinates (λ, λ, λ).

We seek an equation for a line l in the 2D plane. Consider three points
Pi(ai, bi, ci), i = 1 . . . 3, on the line l. Because the three 3D vectors

−−→
OPi lie

in the same subspace, we have a1 a2 a3

b1 b2 b3
c1 c2 c3

 = 0,

the same form we saw in § 12.2 and nearly the same as the one in § 2.2. If
two points are known and the third P (a, b, c) is unknown, we can compute the
minors in the matrix above to yield the equation for a line as

αa+ βb+ γc = 0,

also as in § 12.2. Evidently there is a mapping between 3D planes and 2D
lines. This is convenient. The intersection of two 2D lines is the common sub-
space between two 3D planes passing by the origin. The solution is reached by
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solving two equations in three unknowns up to a scalar factor, and so the coor-
dinates of a line (α, β, γ) are homogeneous; all lines of the form (λα, λβ, λγ)
for λ 6= 0 capture the same plane.

Now suppose that we partition one unit of mass in three (positive) parts.
The barycenter must then lie inside the triangle ABC. This parameteriza-
tion is useful for color interpolation in a triangular mesh or, conversely, for
finding the relative weights at the three vertices of a triangle after ray cast-
ing [96]. Directions (§ 3.2) are usually only known at the vertices of a solid
object described by its boundary (Chapter 26). And so shading (Chapter 21) is
determined only at vertices. Barycentric parameterization makes it possible to
generate shading values in the interior of triangles.

No discussion of homogeneity is complete without considering ideal points.
As with projective homogeneous coordinates, barycentric coordinates cap-
ture ideal points on the plane ABC, not those of the embedding 3D space.
The three ideal points of the three lines AB, BC, and CA are straightfor-
ward generalizations of the case in 1D. Given that the three ideal points have
α + β + γ = 0, we know that that must be the characterization of the ideal
line.

A

B

C

P

c

a

b

Converting from Euclidean to Barycentric Coordinates

One occasionally knows the Euclidean coordinates of a point and wishes to
determine its barycentric coordinates. Given a point P (x, y) amidst the funda-
mental points A, B, and C, we seek a, b, and c of P .

The answer, which we will need in Exercise 20.1, reduces to a simple area
computation [27]. Since

a

b
=
QBC

AQC
=
PQC

AQP
=
QBC − PQC

AQC −AQP
=
BPC

CPA

and likewise for the ratios b/c and c/a, the ratio a : b : c is that of BPC :
A

B

C

P

Q

CPA : APB. Determining the areas of the three triangles (Exercise 7.6) thus
also provides the barycentric coordinates.

13.3 Exercises

13.1 Draw two fundamental points A and B on a line and then determine the
location of the points with barycentric coordinates (2, 1), (2,−1), (2, 4),
and (6,−3).

13.2 Determine the coordinates of the midpoints shown in the adjacent figure
as well as those of the median of the triangle ABC.

13.3 Determine the equation of the three median lines in the adjacent figure.

A

B C

13.4 Determine the coordinates of the ideal point on each of the three median
lines.

13.5 Write a characterization for the coordinates of the ideal point on a line
AB with a mass a at A and another b at B.
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13.6 Devise two methods, one based on a circle and the other based on paral-
lel lines, to find the barycentric coordinates of a point P lying on a line
AB.

13.7 Find the equation of the line l that passes by two points P and Q. P lies
on the lineAC and has coordinates (pa, 0, pc) andQ lies on the lineBC
and has coordinates (0, qb, qc).

13.8 Determine the equation of each of the six lines shown in the figure as a
function of weights at the three fundamental points A, B, and C.

A

B

C
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14 Oriented Projective Geometry

Something disconcerting lies at the heart of computer graphics. Our main
objective is to simulate a camera using a computer. Because the camera we
simulate has a planar film, we naturally appeal to projective geometry. We
declare the film plane to be the projection plane and the eye to be the center
of perspectivity. We create computer models of the scene and position the
eye. But unless the scene model is incomplete or very modest, the eye will
be surrounded by the scene—parts of the scene will lie behind the camera.
Because projective geometry is nonseparable, all points on a line passing by the
eye will project to the same point on the image plane—regardless of whether
the point being projected lies in front of or behind the eye. This is of course
not how a real camera works. It probably is also not what we want to render.
We would prefer objects behind the eye not to be included in the image.

14.1 Double-Sided Projection

So what do we do? One option is to discard objects behind the eye before pro-
jecting them on the image plane. In any case, we want to do that for efficiency
reasons. But that also smacks of hacking. We still do not have a theory for
arguing about what would have happened to the objects behind the eye had we
not performed clipping. Besides, if the computer makes it possible for us to
do something that is impossible with a physical camera, why would we want
to throw out that power and tailor our model to the limitations of a physical
device? Perhaps we wish to implement an all-viewing system, where an omni-
eye is capable of seeing everywhere at the same time. We will see in Part VII
that we can do just that by projecting on a sphere. This is convenient, but we
still want to produce planar projections. After projecting on a sphere the prob-
lem has been distilled to its essence, but it is still there. If we declare a center
of interest, the location where the eye is most interested, and position the view
plane such that it is orthogonal to the view direction, then two points will map
to the same point on the image plane.

Stolfi’s oriented projective geometry has the answer [104]. Instead of one,
he assumes there are two projection planes—infinitesimally separated from
each other. The dual projection planes can be positioned anywhere but cannot
pass by the eye. Their distance from the eye is a matter of focal distance and
relates in a physical camera with using one lens or another. The perspective
is not affected by positioning the double projection plane, only by positioning
the camera. Regardless of where the double projection plane lies, imagine that
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there is one plane parallel to it and passing by the eye. When we talk about
objects in front of or behind the camera, we refer to that plane, not the double
projection plane. Now declare the projection plane on the side of the eye to be
the front projection plane and declare the plane on the opposite side of the eye
the back side. (In a film camera the front side of the projection plane is the side
of the film photons impinge on and the side of the film touching a plate—were
it to be possible to use it to capture pictures—would be the back side.)

Two types of projection take place. Objects in front of the eye (including
those between the eye and the projection plane) project on the front projection
plane and objects behind the eye project on the back projection plane. Oriented
projective geometry makes it possible to model flipping the orientation of the
camera since pointing the camera in the opposite direction should also have
an algebraic effect. Elements of the transformation matrix will change sign in
addition to the front and the back image planes swapping roles [62]. In classi-
cal projective geometry the sign of a transformation matrix does not affect the
projection and two opposite orientations of the camera cannot be distinguished
algebraically.

Recall the setup in Chapter 11. A line segment AD lies in an input plane
and is projected through a center of perspectivity onto a segment A′D′ on a
view plane. Yet turning the view projection plane into a double-sided plane
will make it easy to distinguish between the internal and the external segments
A′D′.

D

A

C

C′

D′

E

E

C′

E′

A′

B

view

input

Points as distant from the double projection plane as the eye are special.
They project on the ideal line of the double projection plane. But this ideal
line is also of a more exotic variety than a spherical circle. Like a spherical
circle (§ 9.3), antipodal points are not identified. The surface on which we are
projecting has the same topology as a sphere, though geometrically it is an
unusual sphere: The two antipodal ideal points are shared between the front
and the back projection planes in a criss-cross fashion. To see this, consider
projecting AD where A lies in front of the eye eye and D lies behind the eye.
The interval [A,C) projects on the front plane and the interval (C,D] projects
on the back plane. The point C ′, the projection of C, is shared between one
side of the front plane and the opposite side of the back plane. Just as with
barycentric coordinates it was rather awkward to talk about the center of mass
when the total mass in the system was zero, and so we talked instead about
two distinct limits for approaching a massless state, so here also we talk about
two distinct limits. If we approach C from A’s side, the limit falls on the

A

C

A′

C′

D

E

C′

E′

D′

front plane. If we approach it from D’s side, the limit falls on the back plane.
But ultimately the projection is indeed continuous because the two limits are
identical.

Another indication that the double projection plane, oriented projective
plane, or T 2 for simplicity, is not simply a flattened sphere can be seen by
considering the orientation of the two segments, A′C ′ on the front plane and
C ′D′ on the back plane. A spherical circle in a flattened sphere would have
opposing orientations.

One detail remains awkward. If the image plane is made double-sided,
should the object (or input—in computer graphics) plane not also be made
double-sided? If the input is devised in Euclidean space and if we map the

A

C

A′

C′

D

E

E

C′

E′

D′
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input points to oriented projective space by appending +1 to the coordinates,
the full richness of the double-sidedness of the input plane will not be ob-
served. But just as completing the mapping between two projective lines re-
quired appending ideal points on both lines (§ 11.1), so here also must we make
both planes double-sided to complete the mapping.

14.2 The Oriented Projective Line and Plane

The Oriented Projective Line

We are now ready to construct a new kind of projective line, the oriented
projective line T 1. As with the (classical) projective line, P1, the new line
can be studied by considering either the points on the unit circle—the spher-
ical model—or the points on two lines, a front and a back side—the straight
model [104].

An axiomatic development [59] does not bring us any closer to designing
computing machinery, so we continue by studying double-sided linear sets em-
bedded in Euclidean spaces. Points on the front side of a line have w > 0, and
points on the back side have w < 0. The coordinates are homogeneous: A
point represented by (x,w) can equally well be represented by (λx, λw). The
difference is that we now insist, as with S 1 (§ 8.1), that λ > 0. Notice that
x and w have the reflected order with respect to the one previously consid-
ered. This is convenient to ensure that the counterclockwise rotation (positive
rotation) in the spherical model agrees with the positive sense of the x-axis.

x

w

T 1 has two ideal points. For simplicity let us call them +∞ and −∞.
These two points occupy their expected locations in the front side of T 1, but
they exchange places in the back side.

To justify the unusual setting of the two ideal points, we appeal to projec-
tion. But there is no need to have a terribly elaborate setup of embedding in
T 2 if we are convinced that central projection through the origin is general
enough. (This view is taken further in Part VII.)

We consider two triangles ABC and DEF . In 2D scenes we posit that the
appropriate sense for triangles (or any polygon) is to have a clockwise orienta-
tion. The interior of a triangle then lies in the negative halfspace defined by the
boundary. This is a widely adopted convention for 3D models (see Chapter 26)
and consistency will make it possible to implement a single algorithm once for
more than one geometry and for more than one dimension in that geometry
(see Chapters 28 and 29).

AB

C

D

E
F

+
∞

+
∞

x

w

Of the six edges in the two triangles, only two, AB and DE, are seen by
(front-facing to) the projection point. AB projects wholly on the front side of
T 1, whereas DE has one point that projects on one ideal point. One part of
the projection of DE lies on the front side and another part lies on the back
side. The ideal point labeled +∞ is shared between the two parts.

Something may appear to be amiss concerning ideal points. T 1 has two
ideal points, but because each ideal point lies on opposite sides of the front
and back sides, it may appear that we are not gaining much concerning pro-
jection. If we apply a transformation matrix and find that the resulting point
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has coordinates (1, 0), it would not be evident whether we are on the front side
or on the back side. The answer is not to take the coordinates of ideal points
by themselves, but to consider how we got there. To reach the +∞ point on
the front side, we take limw→0+(1, w). To reach the same point on the back
side, we take instead limw→0−(1, w). Likewise the −∞ point can be reached
on the front side by taking limw→0+(−1, w) or on the back side by taking
limw→0−(−1, w).
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m
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That it is not possible to determine on which side of infinity an ideal point
lies by observing the final coordinates alone may seem to suggest that moving
to oriented projective geometry is an exercise in pedantry in the first place.
Not so. Oriented projective geometry adds coherence and makes it possible
to determine whether we are subsequently “seeing” the front side or the back
side of a film plane by choosing to render either points with w > 0 or those
with w < 0. Crucially, oriented projective geometry also makes it possible
to perform clipping without the belief suspension inherent in explanations of
clipping using a plane that does not separate space into two parts.

The details of an implementation would be too similar to those so far dis-
cussed for there to be a need to go through an exposition here. Classes and
predicates are needed for Point T1 and Segment T1 that parallel those seen in
Chapter 8 and a class Transformation T1 is needed that parallels that seen in
Chapter 12.

The Oriented Projective Plane

A point can be on either the front side of the oriented projective plane T 2 (if
w > 0) or on the back side (if w < 0). A point is represented using a 3D
vector. Two points are equal iff one vector is a positive multiple of the other.

x

y

w

A line in T 2 is an instance of T 1. If T 2 is considered to be embedded
in 3D, then lines in T 2 are in one-to-one correspondence with oriented planes
in 3D and a line is represented by the 3D vector normal to its corresponding
plane.

A line splits T 2 into two parts. A point P lies in the positive side of a line
l iff l · P > 0.

x

y

w

+ve
+ve

N

14.3 Oriented Projective Transformations

If oriented projective geometry is a superset of projective geometry (identi-
fying antipodal points yields classical projective geometry), one would guess
that oriented projective transformations are also more powerful than projective
transformations. The additional power is that oriented projective transforma-
tions can map points from the front side to the back side and vice versa, a
mapping that would be meaningless in projective spaces.

A 2×2 real-valued matrix can be interpreted in four distinct settings, lead-
ing to four distinct one-dimensional geometries. If we interpret a matrix

M =
[
a b
c d

]
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in the 1D spherical geometry of S 1, we constrain the matrix to be orthogonal
(§ 10.1). If we interpret the same matrix in the 1D Euclidean geometry rep-
resented using homogeneous coordinates, then, as we will see in § 16.5, we
must impose the constraint c = 0. Projective transformations are more general
because an arbitrary matrix can be used in P1, with matrices connected by a
scalar multiple representing an identical transformation. Oriented projective
transformations are yet more general because an arbitrary matrix can be used
in T 1, where matrices connected by a positive scalar multiple represent the
same transformation.

We contemplate the effect of various 2 × 2 matrices on the projective line
and on the oriented projective line. We start with the the projective line P1.

Projective Transformations

As discussed in Chapter 12, projective space Pn is the space of lines passing
by the origin in En+1. The projective line, for instance, is the space of lines
passing by the origin in the plane (§ 12.1).

Consider choosing a set of sample points in P1 and applying different
transformations on them. The points in P1 are uniformly sampled lines de-
fined by antipodal points on the canonical circle. The effect of applying the
matrix [

i 0
0 1

]
for i = 1 . . . 6 is illustrated in Figure 14.1. Negating the matrix or, in fact,
multiplying by an arbitrary (positive or negative) scalar would result in the
same transformation.

Figure 14.1
Effect of x-scaling on P1

What is perceived when projected on the canonical line representation of
P1 as a translation results from the transformation[

1 i
0 1

] [
x
w

]
=

[
1 · x+ i · w

w

]
,

also for i = 1 . . . 6. The result is illustrated in Figure 14.2.

Figure 14.2
Effect of translation on P1

The previous two transformations are equivalent to determining a projec-
tion between two parallel lines. In the first case the center of perspectivity
is affine. In the second it is ideal. To effect a transformation equivalent to
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projecting between two nonparallel lines, a transformation of the form[
1 0
i 1

] [
x
w

]
=

[
x

i · x+ 1 · w

]
is applied. Its effect is illustrated in Figure 14.3.

Figure 14.3
Effect of perspective on P1

Finally, w-scaling can be applied using the matrix[
1 0
0 i

]
for i = 1 . . . 6. The result is illustrated in Figure 14.4.

Figure 14.4
Effect of w-scaling on P1

Oriented Projective Transformations

We choose a set of sample points in T 1 on the front and on the back side. The
two sets are shown in the spherical model of T 1 as points on a unit circle. The
scale transformation [

i 0
0 1

]
effects the mapping illustrated in Figure 14.5. The added power is the ability
to map between points on the front and the back sides; multiplying a transfor-
mation by −1 no longer yields an identical transformation.

Figure 14.5
Effect of x-scaling on T 1

The effect of a translation [
1 i
0 1

]
on the points on the front and the back sides is illustrated in Figure 14.6.

Figure 14.6
Effect of translation on T 1
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The effect the perspective transformation[
1 0
i 1

]
is shown in Figure 14.7. It is now possible to distinguish between two colo-
cated viewers looking in opposite directions [41]. To model a projection that
simulates a viewer looking in an antipodal direction, one simply negates the
matrix. The effect is to swap the front and the back projection planes.

Figure 14.7
Effect of perspective on T 1

Finally, the effect of scaling by w is shown in Figure 14.8.

Figure 14.8
Effect of w-scaling on T 1

14.4 Should One Collapse Geometric Libraries?

Seeing how similar the implementation of a set of classes for the four geome-
tries presented leads one to ask the obvious question: Is there a way to imple-
ment a single library that can be subsequently specialized to capture all or most
classes for En, Sn, Pn, and Tn? A related question, whether the “right” ap-
proach is to provide a set of less type-strict, and hence fewer, classes and leave
application programmers worry about the geometry in which they operate, is
left to § 18.6.

The answer to the specialization question, which would maintain type strict-
ness, appears easy if we would be content with a library that does impose an
efficiency hit. If we are willing to pay a time and space penalty, it is clear that a
library for oriented projective geometry alone could be implemented and then
specialized by overriding equality operators and sidedness predicates, as well
as throwing exceptions if w = 0 when it should not, and so on.

A more significant objective would be to seek a single library for any geo-
metry and for any dimension that incurs no run-time penalties. It is not clear
whether such a library can exist, but this question, as well as building a single
coherent body of knowledge that blends geometric algebra [33] with the set of
libraries described here, are topics for future work.

14.5 Which Model Is Right?

An important question the reader will no doubt ask is: Was Blinn working
in oriented projective spaces all along? In other words, was homogeneous
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clipping [17, 15], which distinguishes between positive and negative w, an
oriented projective geometry algorithm? The answer likely depends on whom
you ask.

Since this chapter suggests that that is the case, it is worthwhile to conclude
with the opposite view. One may argue that the projection plane not only need
not be two-sided, but ought not either. After all it is impossible to construct
two images on a physical film; light reaching the film from either side will have
the same result on its particles. The physical film is, effectively, one-sided.

Two details are necessary for this view to be valid. The first is that one
must distinguish between internal and external segments; the latter includes
an ideal point whereas the former does not. This works well. The second de-
tail does not work so well, for for this view to be valid one must put up with
the notion that it is possible to do clipping, an operation that requires testing
sidedness, in (classical) projective geometry, where a cutting plane has only
one side. If one is willing nevertheless to perform intersection in a nonsepa-
rable space and then use the sign of w to determine whether an interior or an
exterior segment is intended, then classical projective geometry is a suitable,
if awkward, model. So, ultimately, oriented projective geometry may perhaps
continue to suffer from being an instance of the “what can you do with it that
you could not do without it” syndrome [89, p. 48]. Looking back at Blinn and
Newell’s manuscript from 1978 [17], it is easy in retrospect to determine the
space they are in. Their writing x+w = 0 does not suggest an answer one way
or the other, but writing x+w > 0 indicates that they were indeed in oriented
projective space all along. Once one is used to the idea of discarding projective
geometry and adopting oriented projective geometry instead, the naturalness of
it all will become evident—so it is perhaps fitting to conclude by quoting what
Sutherland and Hodgman wrote in an appendix [107]:

If we choose w1 and w2 to have the same sign, we represent the
internal line segment. If we choose w1 and w2 to have opposite
signs, we are representing the external line segment.

14.6 Exercises

14.1 Modify the start-up code labeled “p1-transformation” such that the user
is provided with a starting segment and is able to manipulate using slid-
ers the transformation matrix. Show the effect of the transformation on
the initial segment using both the straight-line as well as the spherical
model.

14.2 Solve Exercise 14.1, distinguishing between the front and the back side
of T 1 by displaying them on two adjacent, but distinct, lines.

14.3 Solve Exercise 14.2, but track instead the motion of a set of points that
are initially equally spaced on the front side of T 1.
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15 Oriented Projective Intersections

We are given a scene, a viewer, and a projection plane in Euclidean space E 3.
Projection requires that we move to projective space P3. We are unable to per-
form clipping in classical projective geometry because a necessary predicate
that reports whether two points lie on the same side of a cutting plane cannot
be implemented. So we move instead from E 3 to oriented projective space
T 3.

We do not wish to project objects that lie behind the viewer. To discard
such parts of the scene, we could define a viewing pyramid in E 3 and perform
clipping operations in Euclidean space, but that would entail too many floating
point operations just to determine whether a given segment straddles each of
the six clipping planes bounding the viewing pyramid.

So we choose instead to move to T 3. A transformation matrix will map
the six corners of the viewing pyramid to the corners of a unit cube. Clipping
is performed using the planes carrying the sides of the unit cube. This chapter
discusses a revision of the graphics pipeline (§ 12.9), adding oriented projective
clipping.

15.1 The Need for Clipping

Projective geometry satisfies all our imaging needs—with the exception of
clipping. We already saw the issues involved in § 12.9, but let us take another
look at projection once again in oriented projective space.

Analysis: Approaching a Cube

Consider a viewer located near the positive z-axis, looking in the negative
z-direction, and moving along that direction toward a cube centered at the
origin. Since two faces of the cube are always parallel to the image plane, their
projections will evidently remain two squares. But what is the projection of
the four edges parallel to the z-axis?

x

y

z

What the viewer sees when the image plane does not intersect the cube is
simple. The farther of the two faces parallel to the image plane will project,
due to perspective, to a smaller square than the one closer to the image plane.
The remaining edges will connect these two faces. To break the symmetry the
viewer is situated on a line parallel to the z-axis and near, but not coincident
to, that axis.

But we are most interested in what happens when the viewer continues
moving forward and crosses the near face of the cube. As the viewer becomes
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infinitesimally close to that face, its four vertices will project to four points
that approach four (not two) ideal points on the front projection plane. At the
moment of crossing, the four vertices will project to ideal points. These ideal
points are located simultaneously on the front and the back image planes. If
we are convinced that the projective plane P2 is no more than a sphere S 2 with
antipodal points identified, it is not hard to believe that each point on just one
line (the ideal line) consists of identifying two points—one from the front and
the other from the back image plane.

After crossing, because the image of a point lying behind the viewer is
reversed on the image plane (not unlike the reversal of photographs on the
film plane in physical cameras), the projection of the four edges parallel to the
view direction will appear diagonally across the image plane. The elementary
perspective rule still applies: Features closer to the viewer (either in front or
behind the viewer) will appear larger than farther features. But even though
our model has a front and a back image plane, the paper we print on has only
one side—and so two images appear superimposed on paper.

The image thus obtained has two flaws. The less harmful of the two flaws
is that it may not necessarily make sense to assume that the viewer is capable
of seeing simultaneously in two opposite directions, but perhaps we wish to
consider that that is a feature. The more serious problem is that, as encoun-
tered in Chapter 11, a segment AB that crosses the image plane projects to a
segment A′B′ on the image plane, but the resulting oriented projective seg-
ment is not the affine combination of the projections of the two endpoints A′

and B′. The result must by necessity contain an ideal point, the projection of
the intersection of AB with a plane passing by the viewer and parallel to the
image plane. To see that that is the case, glide a point C from A to B and de-
termine its projection C ′. The set of points C ′ is the desired projection. When
we adopt oriented projective geometry as our model, the external segment no
longer consists of a single segment. There are now two segments, one on the
front and the other on the back image plane.

A

B

B′

C

x

z

A′ C′

One may clip to ensure that neither of these two problems arises. And
so the objective of clipping is to discard the portions of the scene that lie be-
hind the viewer, but points lying arbitrarily close to the plane passing by the
viewer and parallel to the image plane would also project to points arbitrarily
far (arbitrarily “close to” an ideal point) and would also need to be discarded.
In practice one sets a near clipping plane in front of, but not too near to, the
viewer.

15.2 Clipping in Oriented Projective Spaces

As always, to clip is to determine the intersection of an object of interest with
a halfspace or a combination of halfspaces—a rectangle or a parallelepiped.
A halfspace in oriented projective geometry is defined by a hyperplane. The
hyperplane has two sides: a positive side and a negative side—and so also we
can talk about either the positive halfspace or the negative halfspace. To clip
using a halfspace is to discard those portions of an object that do not lie in it.
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We first consider clipping in the spherical model of the oriented projective
line T 1. Consider that the “object” we are clipping is no other than the entire
line T 1, shown as the circle in Figure 15.1(a). We define two points P1 and
P2 on that line and clip twice. Were we to clip using the positive halfspace
defined by P1, we would obtain the set of points highlighted in Figure 15.1(b).
Clipping using P2’s negative halfspace would give us those points highlighted
in Figure 15.1(c). The intersection of the two sets is shown in Figure 15.1(d).
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(a)

P2
P1

(b) (d)(c)
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x

w
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w

x
Figure 15.1
Clipping illustrated in the spherical
model of T 1

In the linear model of T 1, the two hyperplanes also define four segments—
even though we are tempted to perceive them as six [Figure 15.2(a)]. Clipping
using one hyperplane or another is illustrated in Figures 15.2(b,c). Clipping
with both is illustrated in Figure 15.2(d).
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Figure 15.2
Clipping illustrated in the linear
model of T 1

Clipping proceeds in much the same way in T 2. Now we have a line l
that we wish to clip using the positive side of a line (hyperplane in T 2) m and
the negative side of another line n [Figure 15.3(a)]. Clipping with the former
is shown in Figure 15.3(b) and clipping with the latter in Figure 15.3(c). The
result of performing the two clipping operations successively is illustrated in
Figure 15.3(d). Naturally, the line l is itself oriented, and the ending fragment
has the same orientation as l.
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l
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Figure 15.3
Clipping illustrated in the linear
model of T 2
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15.3 The Algebra of Intersections

Negative w

Chapter 12 discussed the difficulty one encounters when attempting to render
a segment in the projective plane by mapping the segment to the Euclidean
plane. Simply dividing x by w for each endpoint and assuming that the seg-
ment consists of the affine set of points colinear and between the two points (as
in the left of Figure 15.4) is inadequate. Doing so presumes that the segment
does not contain an ideal point. Yet two segments are plausible in a projective
space, one containing an ideal point and the other fully affine.

If one then renders the segment and ensures that a segment containing an
ideal point is indeed rendered as the external segment between two points, the
segment would still appear incorrectly. As shown in the middle of Figure 15.4,
the two film planes should not be superimposed.

Figure 15.4
Three interpretations of a

segment in T 1 are possible.
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The only correct interpretation (shown on the right of Figure 15.4) of a
segment with one endpoint having a negative w is to treat the segment as con-
sisting of two portions, one with positive w and the other with negative w. The
portion with (strictly) positive w maps easily to the Euclidean plane — though
some cutoff is needed so that the ideal point is not approached, in practice
leading to multiple clipping operations. The portion with negative w lies on
the back image plane and is not rendered.

When a projective segment is rendered in a viewport (three bottom images
in Figure 15.4), the two false interpretations lead to either the left or the middle
images: The segment is either wholly affine or the sign of the homogenizing
variable w is ignored. In the desired image on the right of the figure only
a subset of the segment appears to simulate correctly a camera aimed at one
direction.
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Point Combination

We can interpolate between two nonantipodal endpoints of a segment in T 3

defined by (x1, y1, z1, w1) and (x2, y2, z2, w2) using the equations

x = x1 + (x2 − x1)t, y = y1 + (y2 − y1)t,
z = z1 + (z2 − z1)t, w = w1 + (w2 − w1)t.

Plane-Segment Intersection

To find the intersection of an oriented plane in T 3 defined by the vector

(X,Y, Z,W )

and a segment in T 3 defined by the two points

(x1, y1, z1, w1)− (x2, y2, z2, w2),

we substitute in the equation of the plane

Xx+ Y y + Zz +Ww = 0

by the combination of the two points [14]

X[x1 + (x2 − x1)t]
+Y [y1 + (y2 − y1)t]
+Z[z1 + (z2 − z1)t]
+W [w1 + (w2 − w1)t] = 0

=⇒ Xx1 +X(x2 − x1)t
+Y y1 + Y (y2 − y1)t
+Zz1 + Z(z2 − z1)t
+Ww1 +W (w2 − w1)t = 0,

and so

Xx1 + Y y1 + Zz1 +Ww1 =X(x1 − x2)t
+ Y (y1 − y2)t
+ Z(z1 − z2)t
+W (w1 − w2)t,

yielding the expression for t:

t =
Xx1 + Y y1 + Zz1 +Ww1

X(x1 − x2) + Y (y1 − y2) + Z(z1 − z2) +W (w1 − w2)
.

15.4 The Revised Graphics Pipeline

Using projective geometry as a foundation software layer for computing pro-
jectivities had several inconsistent and therefore undesirable features:
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• In the projection transformation the observer was moved to a point at
infinity along the view axis. But which infinity? In projective geometry
only one ideal point exists on a line. This would appear to say that the
observer is moved to the ideal point on either side of the view axis.

• Because the projection plane is nonorientable, writing a function that
determines whether the “front” face of a polygon is visible makes no
sense. The back face of the polygon is equally visible. The notion of a
polygon itself is awkward; one may rigorously talk about the endpoints
of a polygon and of the lines carrying the edges of a polygon, but not of
the segments defining a polygon or of the polygon itself.

The input scene is described in E 3(R), which consists of the classes for
3D Euclidean geometry instantiated for a data type simulating the set of real
numbers. We can for simplicity think of E 3(R) as equivalent to E 3(float) or
E 3(double), subject to keeping in mind the traps discussed in Chapter 7.

The output image is described in a subset of E 2(R) if we are interested in
a vector image, or in a subset of E 2(N) if we are interested in a raster image.

If we choose to operate purely through sampling, then remaining in Euclid-
ean spaces is possible. Perspective discrete images can indeed be performed
using solely Euclidean objects through ray casting (Chapter 23). But if we
wish to remain, even partially, in a continuous domain, then some move into
non-Euclidean spaces becomes necessary.

The two operations that we wish to perform are

1. Clipping: We need to discard part of the image that will not fall within
the viewing window. If the two corners of the image in E 2(N) are de-
clared to be (0, 0) and (width, height), we would not wish any features
to appear outside that rectangle.

2. Projection: We need to find a function that maps points from E 3(R) to
E 2(R) (leaving rasterization as a distinct question).

We retake the graphics pipeline discussed in § 12.9 and present a revised
version that passes through oriented projective space rather than through pro-
jective space:

E3 T 3 E3 E2V P D \z+1
T 3 T 3M

T 3

When we map the input primitives from Euclidean to oriented projective
space, we choose to append w = 1. In other words, we choose the “front
side of the world.” The modeling transformation M must now maintain the
primitives in that side. Viewing the scene continues to move the viewer to the
origin and is performed by an orthogonal transformation V . The perspective
transformation P is performed next, followed by perspective divide, and finally
z is discarded (after computing visibility).

Just as we were able to clip in Euclidean space when using a projective
geometry engine, we can still do so after the modeling transformation.
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E3 T 3 E3 E2V P Dclip \z+1
T 3T 3 T 3M

T 3

But that is unappealing since it is expensive. We contemplate clipping after
the viewing transformation. Because the viewer is then at the origin, four of
the six clipping planes would pass by the origin.

E3 T 3 E3 E2V P Dclip \z+1
T 3T 3 T 3M

T 3

Yet it is best to perform clipping after the perspective transformation. As
we see in the next section, the sides of the unit cube make computation in
oriented projective space particularly easy.

E3 T 3 E3 E2V P Dclip \z+1
T 3 T 3 T 3M

T 3

15.5 Clipping or Splitting a Segment

The projective transformation discussed in § 12.9 maps points to the cube with
diagonal (−1,−1,−1, 1)–(1, 1, 1, 1). After this transformation clipping can
be performed using a predetermined clipping plane with known coefficients.

Plane T 3 Plane E 3 Plane T 3 Halfspace E 3 Halfspace
Xmax −x+ w = 0 x = 1 −x+ w > 0 x < 1
Xmin x+ w = 0 x = −1 x+ w > 0 x > −1
Ymax −y + w = 0 y = 1 −y + w > 0 y < 1
Ymin y + w = 0 y = −1 y + w > 0 y > −1
Zmax −z + w = 0 z = 1 −z + w > 0 z < 1
Zmin z + w = 0 z = −1 z + w > 0 z > −1

Since many of the coefficients of the set of canonical clipping planes van-
ished, it would be advantageous not to reduce unit-cube clipping to six in-
stances of general plane clipping, but to write six individual routines that cater
to the canonical clips. Doing so discards all four multiplications and replaces
them with the simpler multiplications by 0 or by ±1.

In an implementation the six clipping planes map to six oriented projective
planes in T 3.

const Plane T3d Xmax = Plane T3d(−1, 0, 0, 1);
const Plane T3d Xmin = Plane T3d( 1, 0, 0, 1);
const Plane T3d Ymax = Plane T3d( 0, −1, 0, 1);
const Plane T3d Ymin = Plane T3d( 0, 1, 0, 1);
const Plane T3d Zmax = Plane T3d( 0, 0, −1, 1);
const Plane T3d Zmin = Plane T3d( 0, 0, 1, 1);
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Plane Xmax Xmin Ymax Ymin Zmax Zmin
X
Y
Z
W



−1
0
0
1




1
0
0
1




0
−1
0
1




0
1
0
1




0
0
−1
1




0
0
1
1



To determine whether a point P (x, y, z, w) lies in the positive halfspace
defined by a plane π(X,Y, Z,W ), determine the sign of the inner product
Xx+ Y y + Zz +Ww.

A point on a line segment A(xa, ya, za, wa)–B(xb, yb, zb, wb) passes by
the plane x = 1 or, homogeneously, the plane x = w, when

xa + (xb − xa)t = wa + (wb − wa)t,

and so
t =

wa − xa
(wa − xa)− (wb − xb)

.

An intersection with the plane x = −1, homogeneously the plane x = −w, is
characterized by

xa + (xb − xa)t = −wa − (wb − wa)t,

and so
t =

wa + xa
(wa + xa)− (wb − xb)

,

and likewise when clipping at y = ±1 and at z = ±1.
If a point on the segment AB is parameterized by t such that t = 0 at A

and that t = 1 at B, the point can be described by

x = xa + (xb − xa)t, y = ya + (yb − ya)t,
z = za + (zb − za)t, w = wa + (wb − wa)t.

As discussed in § 15.3, replacing in the equation of the splitting plane

t =
Xxa + Y ya + Zza +Wwa

X(xa − xb) + Y (ya − yb) + Z(za − zb) +W (wa − wb)
,

and then in the equation of the segment yields the desired coordinates of the
intersection point.

Polygon clipping using homogeneous coordinates is otherwise identical to
clipping a polygon in Euclidean space (§ 5.4).

15.6 The Graphics Pipeline as a Function Object

The similarity between projective space P3 and oriented projective space T 3 is
such that we can write a function object for the oriented graphics pipeline that
closely mimics that written for the (classical) graphics pipeline (c.f. page 137).




	

��

15.6 THE GRAPHICS PIPELINE AS A FUNCTION OBJECT 165

class T3 pipeline without clipping
{

const Transformation T3d T;
const Perspective divide d my perspective divide;
const Project on xy d my projection;

public:
T3 pipeline without clipping( const Transformation T3d& T ) :

T( T), my perspective divide(), my projection() {}

Point E2d operator()( const Point E3d& P1 )
{

Point T3d P2 = Point T3d( P1 );
Point T3d P3 = T( P2 );
Point E3d P4 = my perspective divide( P3 );
Point E2d P5 = my projection( P4 );
return P5;

}
};

But in T 3 we also gain the ability to perform clipping.

class T3 pipeline with clipping
{

const Transformation T3d T;
const Perspective divide d my perspective divide;
const Project on xy d my projection;

public:
T3 pipeline with clipping( const Transformation T3d& T )

: T( T), my perspective divide(), my projection() {}

Point T3d pre clip( const Point E3d& P1 )
{

Point T3d P2 = Point T3d( P1 );
Point T3d P3 = T( P2 );
return P3;

}

Segment T3d pre clip( const Segment E3d& S1 )
{

Point T3d source = pre clip( S1.source() );
Point T3d target = pre clip( S1.target() );
return Segment T3d( source, target );

}

Point E2d post clip( const Point T3d& P3 )
{

Point E3d P4 = my perspective divide( P3 );
Point E2d P5 = my projection( P4 );
return P5;

}

Segment E2d post clip( const Segment T3d& S3 )
{

Point E2d source = post clip( S3.source() );
Point E2d target = post clip( S3.target() );
return Segment E2d( source, target );

}

std::pair<bool, Point E2d>
operator()( const Point E3d& P1 )
{

Point T3d P3 = pre clip( P1 );

if(
oriented side(Xmax, P3) == ON POSITIVE SIDE &&
oriented side(Xmin, P3) == ON POSITIVE SIDE &&
oriented side(Ymax, P3) == ON POSITIVE SIDE &&
oriented side(Ymin, P3) == ON POSITIVE SIDE &&
oriented side(Zmax, P3) == ON POSITIVE SIDE &&
oriented side(Zmin, P3) == ON POSITIVE SIDE )

{
Point E2d P5 = post clip( P3 );
return std::make pair( true, P5 );

}
else

return std::make pair( false, Point E2d() );
}

std::pair<bool, Segment E2d>
operator()( const Segment E3d& S1 )
{

Segment T3d S3 = pre clip( S1 );

if( positive half space clip( Xmax, S3 ) &&
positive half space clip( Xmin, S3 ) &&
positive half space clip( Ymax, S3 ) &&
positive half space clip( Ymin, S3 ) &&
positive half space clip( Zmax, S3 ) &&
positive half space clip( Zmin, S3 )
)

{
Segment E2d S5 = post clip( S3 );
return std::make pair( true, S5 );

}
else

return std::make pair( false, Segment E2d() );
}

The above code treats all six clipping planes as ordinary planes, which
results in many more floating point operations than are necessary. Production
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code would introduce the (simple) refactoring by writing specialized functions
for each of the six clipping operations. Both are functionally equivalent and so
we leave this code as is.

Were we to perform clipping in x only, we would obtain the images in
Figure 15.5. After x and y clipping, we obtain the images in Figure 15.6, and
after x, y, and z clipping, we obtain those in Figure 15.7.

Figure 15.5
Clipping is performed in x only.
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Figure 15.6
Clipping is per-

formed in x and y only.

Figure 15.7
Clipping is per-

formed in x, y, and z.

15.7 Characterizing the Four Geometries

The distinction between Euclidean, spherical, projective, and oriented projec-
tive geometries can be made clearer by observing (as Klein did in 1872 [58])
that the characteristic distinction is that of the transformations that can be ap-
plied. The set of possible transformations in Euclidean geometry of n dimen-
sions is the set of of nonsingular matrices of order n—and an order-n trans-
lation vector. The set of possible transformations in projective geometry of n
dimensions is the set of nonsingular matrices of order n+ 1 up to scalar mul-
tiples. The topological connection between oriented projective geometry and
spherical geometry is discussed extensively by Stolfi [104], but it is again easy
to characterize a difference between the two geometries. Whereas the set of
transformations for oriented projective geometry of order n is the set of non-
singular matrices of order n+1 up to a signed scalar multiple, only orthogonal
transformations are allowed for spherical geometry.

In other words, as illustrated in Figure 15.8, take S 2 and identify each two
antipodal points, but do not give any special status to the ideal line—or treat
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it homogeneously—and you obtain P2. The three lines defined by a triangle
partition P2 into only four regions. Continue to identify antipodal points, but
declare a special line to be the ideal line and disallow transformations that
map points on the ideal line to affine points (or vice versa), and you obtain
the affine plane. We can also restrict the transformations to disallow affine
transformations that do not preserve congruence (rigid-body and uniform scale
remain, but shear and nonuniform scale are excluded) to obtain the Euclidean
plane. In computing it does not seem worthwhile to make the distinction so we
can continue to apply an arbitrary affine transformation in Euclidean geometry
knowing that only some preserve angles and lengths ratios. Interpret the points
in S 2 as the two sides of an oriented projective plane and you obtain T 2.

S 2 P2 T 2S 2 E 2 S 2

Figure 15.8
Connection between the four
geometries

15.8 Exercises

15.1 Draw one circle on S 2 and define a region as a connected set of points
such that it is not possible to move continuously from points in one re-
gion to another without crossing the circle.

a. Label the regions separated by the circle on S 2. How many regions
are there?

b. Label the regions that result when antipodal points are identified,
resulting in P2. How many regions are there?

c. Label the regions that result from interpreting S 2 as an oriented
projective plane T 2. How many regions are there?

15.2 Repeat Exercise 15.1, but start with two distinct circles on S 2. Into how
many regions is each plane partitioned?

15.3 Repeat Exercise 15.1, but partition S 2 using three circles. How many
regions result in each geometry?

15.4 The adjacent figure is a redrawing of the (incorrect) image of a cube
that we encountered earlier in this chapter. Only this time the front and
the back faces of the cube are shown in a heavier line. Draw by hand
a correct image by replacing each of the remaining lines. Justify your
drawing.

15.5 Once again draw by hand the adjacent figure, but this time use two colors
(or shades). Use one color for the projection on the front side of the
image plane and another color for the projection on the back side.
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15.6 We continue with the same cube, but now we focus on the four faces
that intersect the plane passing by the viewer and parallel to the image
plane. The projection of these four faces is shown in Figure 15.9. Draw
the four faces on the spherical model of the oriented projective image
plane.

Figure 15.9
Four faces of the cube
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Part III

Coordinate-Free Geometry
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16 Homogeneous Coordinates for Euclidean Geometry

Homogeneous coordinates were introduced as a representation for projective
geometry. We consider in this chapter how homogeneous coordinates can also
be used in Euclidean geometry. When discussing homogeneous coordinates
as an analytical tool for projective geometry, the case of the homogenizing
variable being set or acquiring a zero value turned out to be especially useful
since it made it possible to capture ideal points. This chapter discusses why it
may be useful to use homogeneous coordinates even when the case of w = 0
is disallowed by discarding the transformations that map between affine and
ideal points.

16.1 Homogeneous Coordinates for Efficiency

It is possible to design a library for Euclidean geometry using homogeneous
coordinates. A point P has coordinates (x, y, w) and a line L has coefficients
(X,Y,W ). P is incident to L iff Xx+ Y y +Ww = 0 and is on the positive
side of L if Xx + Y y + Ww > 0. But the two operations of line and point
construction become simpler when one chooses to use homogeneous coordi-
nates. Using Cartesian coordinates (Chapter 1), the intersection of a line with
coefficients (a1, b1, c1) capturing the line a1x + b1y + c1 = 0 with the line
(a2, b2, c2) is found by computing

x =

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ , y =

∣∣∣∣ c1 a1

c2 a2

∣∣∣∣∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ .
Finding the Cartesian coordinates (x, y) of the point of intersection requires
six multiplications, three subtractions, and two divisions.

The alternative is to use homogeneous coordinates. Intersecting a line
described by the coefficients (X1, Y1,W1) that captures the points satisfying
X1x+ Y1y +W1w = 0 with the line (X2, Y2,W2) is found by

x =
∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ , y =
∣∣∣∣ c1 a1

c2 a2

∣∣∣∣ , w =
∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ .
Computing the point of intersection in homogeneous coordinates requires six
multiplications and three subtractions, but no divisions.

The treatment for parallelism under homogeneous coordinates need not be
any different than under Cartesian coordinates. Whichever action the library
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designer chooses to adopt when a1b2 − a2b1 = 0 under Cartesian coordinates
(exception, assertion, warning, and annulment—in the case of an interactive
system) can also be taken under homogeneous coordinates. The flag is then
simply that w = 0.

16.2 Homogeneous Coordinates for Exactness

Because division operations are no longer necessary under homogeneous co-
ordinates, one may use integer instead of floating point numbers. A system
basing its predicates exclusively on integers (see § 7.6) will always make cor-
rect branching decisions and will have no chance of crashing for making con-
tradictory branching decisions.

But there is a price to pay. If two integer coordinates of n bits each are
used in, say, an intersection computation, their product will in general require
2n bits. Using a pair of such numbers in another intersection operation will
require 4n bits. This suggests that machine built-in integers would suffice for
algorithms that can be expressed with a very modest algebraic degree (§ 6.4)
and, even then, only if the input also can be described with limited bit size.

16.3 Point Representation

If homogeneous coordinates are used to capture a point in E 2, then a sketch
for a class Point E2 may look as follows:

template<typename T>

class Point E2
{
private:

T x, y, w;
public:

Point E2() : x(0), y(0), w(1) {}
Point E2(const T& x, const T& y, const T& w=1) : x(x), y(y), w(w) {}
...

};

Even though the class fully mirrors the class Point P2 for a point in the
projective plane P2 (§ 12.2), the above sketch assumes that the two implemen-
tations would be kept entirely separate. The issues surrounding the possibility
of merging libraries for distinct geometries is discussed in § 18.6.

16.4 Line Representation

We saw in § 1.5 that a line was more naturally captured by the coefficients of
ax+by+c = 0 rather than through the coefficients of the normalized equation
Ax + By + 1 = 0. Using the coefficient c was at that time seen as not only
convenient to avoid two division operations when constructing the line, but
also as necessary to capture lines passing by the origin.
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template<typename T>

class Line E2 {
private:

T X, Y, W;
public:

Line E2(const Point E2& P1, const Point E2& P1);
...

};

Perhaps the most elegant formulation for a line that passes byP1(x1, y1, w1)
and P2(x2, y2, w2) is similar to an expression we have already encountered in
§ 2.2. If P (x, y, w) is a point on the line, then P , P1, and P2 must be colinear:
hence,  x x1 x2

y y1 y2
w w1 w2

 = 0.

This form makes it easy to recall that one can determine the values of X , Y ,
and W as minors of the matrix.

16.5 Affine Transformation Objects

We were content in § 4.4 to represent an affine transformation while mas-
querading its six elements for Cartesian coordinates as a 2× 2 matrix in addi-
tion to a vector. Effectively, the following sketch could have been used:

template<typename T>

class Transformation E2
{
protected:

T m00, m01, m02;
T m10, m11, m12;
...

};

But following the discussion in Chapter 12 we now notice that the set of
affine transformations can be considered a subset of projective transformations.
A sketch for a homogeneous transformation may look as follows:

template<typename T>

class Transformation E2
{
protected:

T m00, m01, m02;
T m10, m11, m12;
T m22;
...

};

The two perspective elements m20 and m21 are not stored since they are
both implicitly 0. To ensure that the homogenizing variable w is not set to 0,
the value of m22 should also be constrained such that it does not equal 0.
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16.6 Sorting Points on the Euclidean Line E 1

It remains possible to sort points on the Euclidean line even when using ho-
mogeneous rather than Cartesian coordinates. We defined in § 2.5 a predicate
oriented side that returns the relative order of two points in E 1 by calculating
the difference between their coordinates. If the two points P1 and P2 are given
as

P1 =
[
x1

w1

]
, P2 =

[
x2

w2

]
,

then P1 < P2 if and only if

x1 x2

w1 w2
sign(w1w2) < 0.

This form is equivalent to normalizing the two homogeneous x-coordinates by
dividing by w and then computing the subtraction, but it is preferable since it
avoids two division operations and uses instead two multiplications in addition
to sign tests.

16.7 Exercises

16.1 Since homogeneous coordinates require the storage of one number more
than Cartesian coordinates in any dimension, they may seem not to be
too appealing. Yet for any application one must weigh the extra storage
with the gain in the number of (floating point) operations needed.

Compare the number of floating point operations needed when one uses
homogeneous rather than Cartesian coordinates to find the intersection
of three planes in Euclidean space. Also, compare the two coordinate
types for finding the intersection of a line and a plane.

16.2 Repeat Exercise 16.1 using CGAL. How does the efficiency gained from
homogeneous coordinates compare to that obtained with Cartesian co-
ordinates?

16.3 Consider the following design option. A distinct class is declared for an
orthogonal transformation. This would make it possible to know through
only the type of the transformation object that the transformation therein
is in fact an orthogonal transformation.

Sketch a design option for that approach and debate how it compares
to a less stringent approach that confuses transformation objects with
various properties.
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17 Coordinate-Free Geometric Computing

Programmers are tempted to extract the coordinates of a geometric object in in-
termediate stages. They frequently do so because they need to implement some
function that is not available in the geometry library they use. Coordinates are
necessary for input and for output, but extracting coordinates in intermediate
stages is dangerous since it easily becomes the source of many bugs that are
hard to find.

This chapter discusses coordinate-free geometry, or the premise that one
does not need (nor wants) to manipulate coordinates in the intermediate steps
of a geometric system. An input to a geometric system must, by necessity,
include coordinates since these would ordinarily be read from a file. The output
also must include coordinates since they are the only way to interface with
the graphical subsystem. But it is possible and desirable to ensure that all
intermediate computations are performed without coordinate manipulation.

The irony of calling for coordinate freedom is that before Fermat and
Descartes all geometry was coordinate-free. Here is how E.T. Bell chose to
describe their impact in his inimitable style:

. . . The idea behind it all is childishly simple, yet the method of
analytic geometry is so powerful that very ordinary boys of sev-
enteen can use it to prove results which would have baffled the
greatest of the Greek geometers . . . [8]

This chapter tries to convince the reader that we may wish after all to do
geometry as ancient geometers would have—even in geometric computing.
Taking this purist approach means ignoring the existence of coordinates and
stepping on higher ground while only calling underlying “oracles.” That un-
derlying predicates would be resolved via coordinates should be left as a detail
and ignored during development of noncore code.

17.1 Stages of a Geometric System

Programming quickly makes us study geometry through coordinates. In doing
so we can forget that geometry was long practiced with no appeal to coordi-
nates. The simple idea of assigning a pair of numbers to a point in the plane
did not occur to the ancients. Establishing geometric facts using algebraic ma-
nipulation is a relatively recent event. Even though the previous chapters took
the notion of coordinates for granted, this chapter suggests instead that the
careless use of coordinates in intermediate stages of computation is a bad idea.




	

��

176 COORDINATE-FREE GEOMETRIC COMPUTING

Indeed, the source of very many geometric programming bugs is the extraction
of coordinates halfway through a system. Coordinates are necessary for input
and for output, but all computation should otherwise be coordinate-free. By
following this advice, geometric programmers could indeed save a great deal
of anguish.

Figure 17.1
Layout of a geometric system Geometry Module 1 Geometry Module 2

Test 1 Test 2

Client code (actual system)Input Module Output Module

The designer of a geometric library consisting of the modules shown in Fig-
ure 17.1 may wish to shield beginning programmers from writing coordinate-
dependent code. One option that could be considered is to provide no accessor
functions for reporting the x-, y-, and w-coordinates of a point represented
using homogeneous coordinates in the plane. Only reader modules, which
interface with the filesystem, and writer modules, which interface with both
the filesystem and with the graphics library, need and are provided access to
coordinates. Client programmers could thus be effectively (and aggressively)
shielded from writing poor-quality and error-prone code. But doing so is usu-
ally not an option for the simple reason that developers frequently rely on co-
ordinates to debug geometric systems. A better approach is to train developers
using a given API to write coordinate-free code—the topic of this chapter.

The chapter is also a prelude to introducing the notion of a geometric ker-
nel. Suppose that when starting to implement a geometric system one remains
undecided about whether to use Cartesian or homogeneous coordinates. Could
one delay this decision as long as possible? In other words, could a set of
classes for points, lines, segments, etc. be written such that they capture either
Cartesian or homogeneous coordinates by using a minimal modification of the
source code? CGAL, which is based on the design of such a geometric kernel
or simply a kernel, is discussed in Chapter 18.

17.2 Dangers of the Lack of Coordinate Freedom

While looking in Chapter 1 at the simple task of writing constructors for a
segment in the plane, we decided not to write a constructor that takes four
coordinates.

class Segment E2d {
private:

Point E2d source, target;
public:

...
Segment E2d(double x1, double y1, double x2, double y2)

: source(x1, y1), target(x2, y2)
{}
...

};
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One of the strongest arguments in favor of coordinate freedom is also the
simplest. If we design our geometric library with a constructor such as the one
above, we can be sure that some day, some client programmer is going to con-
struct a segment using Segment E2d(x1, x2, y1, y2). Experience also shows
that no one is beyond falling for this trap—a trivial bug that is particularly
insidious because it is so easy to omit even looking for it.

Those considering that it would be ludicrous to misinterpret the order of
the parameters in the constructor above only need to look at the following
constructor for a bounding box in the plane—one that was not included in the
set of constructors discussed for a Bbox E2d in Chapter 4.

class Bbox E2d
{
public:

...
Bbox E2d(double xmin, double xmax, double ymin, double ymax)

: LL(xmin, ymin), UR(xmax, ymax)
{}
...

};

Even if listing the x-bounds before listing the y-bounds appears quite rea-
sonable, introducing a bug in a program by writing the parameters in an incor-
rect order is also a subtle bug. It is easiest simply to omit such a constructor.

17.3 Coordinate Freedom as Bug Deterrent

We see in Chapter 18 how CGAL delays both the choice of the floating point
type and the choice between the use of Cartesian or homogeneous coordinates.
Now consider the unfortunate scenario of a library designer providing func-
tions P.x(), P.y(), and P.w() to extract the homogeneous coordinates of a point
P in the Euclidean plane. Consider also that communication failure among
members of the design team led one person to use the first two access functions
as if Cartesian coordinates were used when in fact homogeneous coordinates
are. The team would be on the road to hunting down a bug that has been intro-
duced entirely unnecessarily and that could have been guarded against using
coordinate freedom.

A simple answer is to use different names for accessing the homogeneous
coordinates of a point, perhaps P.hx(), P.hy(), and P.hw(). Doing so is wise but
is an orthogonal issue. What is stressed here is that coordinate freedom leads
to the design of elegant and easily maintainable systems that have a lower risk
of succumbing to trivial programming bugs. Even if the system architect has
no intention of switching from Cartesian to homogeneous coordinates or vice
versa, the use of different names for accessor functions makes it possible to
reveal the segments of code that are not coordinate-free—simply by switching
temporarily from one representation to the other and recompiling.

Giving access to coordinates provides a different venue for introducing
errors. Writing high-level geometric code is challenging and rewarding, but
writing coordinate-dependent code is often tedious since virtually identical
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computations often need to be performed for several coordinates. The bored
programmer is unlikely to type a statement a second and a third time for, say,
the y- and the z-coordinates, but will prefer to cut and paste the line or lines for
the x-coordinate and then modify the coordinates individually. Programmers
who have spent time hunting for a bug they perceived as deep only to discover
that the error lay in the simplest part of their code (and hence the least likely
place for them to search) will have eventually decided that it is wise to isolate
coordinate-dependent code.

17.4 Coordinate Freedom as a Force to a Cleaner Interface

Another argument in favor of coordinate freedom is the memorability of the
resulting interface. Consider the simple example of viewport mapping (§ 4.5).
One may design a transformation function that takes the coordinates of the
lower left and the upper right points in both viewports.

Point E2d viewport map(
const Point E2d& p,
const Point E2d& from LL, const Point E2d E2d& from UR,
const Point E2d& to LL, const Point E2d E2d& to UR );

One may go as far as choosing an interface consisting of the individual
coordinates of the two points at the corners of the two viewports.

Point E2d viewport map(
const Point E2d& p,
double from LL x, double from LL y,
... );

Neither of these solutions is as elegant nor as safe for the application pro-
grammer as an interface that requires passing only the two bounding boxes.

Point E2d viewport map(
const Point E2d& p,
const Bbox E2d& from,
const Bbox E2d& to );

Coordinate Freedom Determines the Design of a Function

Coordinate freedom also acts as a force that determines how the components
of a geometric API are to be organized. For example, the function dominant
was introduced in § 2.4 as a nonmember function. Since that function includes
the statements

double dx = segment.target().x() − segment.source().x();
double dy = segment.target().y() − segment.source().y();

it becomes clear that dominant must be either a member function of the class
Segment E2 or a nonmember function in a directory capturing all those func-
tions that are allowed to access coordinates. The function dominant must be
classified as part of the core or kernel of a geometric library.
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17.5 Coordinate Freedom in Practice

The discussion so far perhaps risks suggesting that coordinate freedom means
performing geometric computation without coordinates, and so defining what
could be termed the principle of coordinate freedom is warranted.

A coordinate-free geometric system is one that isolates the set of
functions that access (read or write) coordinates to a small core
(or kernel). The input and output stages can read and write coor-
dinates, but the processing stages operate by delegating requests
to the kernel while never directly accessing coordinates.

The reader would be rightly suspicious to wonder how far coordinate free-
dom can be pushed in a practical application. This section outlines how coor-
dinate freedom can be adopted and suggests the limits to its adoption.

Enforcing Coordinate Freedom

From the perspective of a geometry library designer, one possible scheme for
enforcing coordinate freedom is to provide no coordinate accessor functions.
Constructors would take coordinates as input and the output subsystems would
be allowed to extract coordinates. A graphics subsystem, for example, would
extract coordinates for visualization.

template<typename K>

struct GLdraw {
static void draw(

const Point E2<K>& p,
const Color& pointColor = Color::yellow,
float pointSize = 5.0 )

{
glPointSize(pointSize);
glColor3f(pointColor.r(), pointColor.g(), pointColor.b());
glBegin(GL POINTS); {

glVertex2f(p.x(), p.y());
} glEnd();
}
...

};

In the example above the class GLdraw is a wrapper for all visualization
functions. GLdraw would be granted friendship liberally so that the private
functions Point E2<K>::x() and Point E2<K>::y() may be accessed. These
functions in turn isolate whether Cartesian or homogeneous coordinates are
used.

There is another advantage to keeping output, and especially visualization,
routines strictly apart from the main library. A frequently adopted design con-
straint is to write a system such that it can be compiled for two target architec-
tures, perhaps one built on OpenGL and the other on Direct3d. By isolating
the output routines, the code base shared between the two targets would be
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maximized, and the developers responsible for each would not “pollute” the
logic of the main code. Even if the developer has no intention of producing
an executable for a different architecture, it is still desirable to keep the output
routines separate. Experience suggests that output functions that share only a
little similarity can go unnoticed and that code duplication can occur, wasting
programmer time and bloating the size of the program. Naturally, the decision
to migrate to a different output library is significantly less costly if the output
modules were isolated in the first place.

As discussed next, and despite all its attractiveness, it is seldom the case in
the real world that heavy-handed enforcement of coordinate freedom would be
tolerated.

Compromise Between Elegance and Efficiency

Standard computing dogma suggests that only the relative complexity of algo-
rithms and implementations should be compared. Yet a geometry library meant
to be used outside the confines of academia could hardly justify preventing
clients from accessing individual coordinates. For example, orthogonal views
are widely used in engineering and architecture drawing since measurements
can easily be taken in the field from diagrams. A system that generates orthog-
onal views of a scene needs to decide whether a polygon faces the camera. Not
insisting on a coordinate-free formulation would forego the computation of an
inner product and would simply compare x, y, or z with zero.

Likewise, a viewport clipping routine (§ 5.4) designed for a rectangle of
arbitrary orientation could be made significantly faster if the clipping rectangle
is known to be axis-parallel. Both determining whether a point is inside a
region of interest and finding the intersection of two lines can be made more
efficient if the bounding line is known to be axis-parallel.

The above example for computing orthographic projections effectively de-
pends on comparing one coordinate of a vector with zero. Suppose one wishes
to sort a set of points in 3D along one of the three main axes. The solution
CGAL takes is to define a function:

Comparison result compare x(Point E2 P, Point E2 Q);

Incorporating compare x promotes coordinate freedom by making it possible
to compare the x-coordinates of two points while only indirectly accessing
those coordinates. Such a predicate may then be used to sort a set of points
without exposing the coordinates.

The option to design the code such that all functions and classes that do
access coordinates are isolated under one directory is particularly attractive.
The code accompanying this text uses this convention: The code in directories
whose name starts with geometry may and does access coordinates, whereas
the code outside these directories does not. The consensus among developers
would be that even though coordinates may be read throughout the system,
they should only be read in an agreed-upon set of directories.
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The Importance of Training

Possibly the strongest argument for adopting coordinate-free geometry arises
from the collective experience of seasoned programmers who eventually ob-
serve that a considerable fraction of bugs was found in coordinate-specific
code. Aside from the efficiency-based need for access to coordinates out-
lined above, beginning programmers will frequently have the need to access
coordinates to implement functionality that they perceive is missing from the
geometry library they use. The answer is to ensure that programmers joining
a team are aware of the abilities of the libraries available and to stress that, on
the chance they require new functionality, such functionality should be added
to the kernel rather than to their own code.

Chapter 1 and this chapter outlined general guidelines for designing geo-
metric systems. These guidelines are frequently collectively called “coordinate-
free geometry” [40, 64, 69]. The convention used here is instead to assume
that suggestions, such as the separation of the types for points and vectors, are
merely geometrically sensible. That they also make it harder for a client pro-
grammer to introduce bugs by using absurd constructions (allowing the scal-
ing of vectors, but not of points) does not make them fall under the guidelines
for writing coordinate-free code. The latter is used here to refer to code that
does not extract coordinates until the final (output) stages, in addition to the
inevitable use of coordinates to read input geometry.

17.6 Exercises

17.1 Write two programs that contain one function for performing viewport
mapping (refer to Chapter 4). The first function uses a viewport and
point objects while the second uses neither but only declares and directly
passes floating point variables as parameters. Compare the assembly
language programs your compiler produces for the two functions and
deduce what efficiency hit, if any, results from using a well-designed
program compared to the direct, but inelegant and unmaintainable, ap-
proach.

17.2 If you have used a version control system during the development of
a geometric program and recall that there was a programming error that
took significantly longer than average to track down, look for the change
that was eventually needed and determine whether or not the error was
in coordinate-dependent code.

17.3 An extreme way of writing coordinate-dependent code is not to define
a class for a point and simply to use individual variables for a geome-
tric computation. Does one lose anything in efficiency (time and space)
when writing coordinate-free code? To find the answer, write a program
for intersecting two segments both using individual variables and by re-
lying on the libraries accompanying this text. Do the two executables
that your compiler generated have the same size? When running each
program a large number of times, is there a time penalty to coordinate
freedom?




	

��

18 Introduction to CGAL

Computational geometry is the art of designing efficient algorithms for answer-
ing geometric questions. Traditionally, the field has focused on the efficiency
of algorithms, but 1996 represented a departure for the field from a purely
theoretical to also a practical one [75]. The reasoning was that geometric algo-
rithms are intricate, and so for its many results to see their way into practice,
the algorithms’ designers themselves should also implement accompanying
systems.

But most algorithms need the same software foundation layer, benefit from
the same optimizations, and use Euclidean geometry. This suggested that a
single kernel [36, 48] could act as a collection of geometric classes on which
all algorithms would be built. At the time of this writing, the Computational
Geometry Algorithms Library (CGAL) remains an active, and widely adopted,
software project.

18.1 Typename Aliasing

With an implementation of two classes Point E2c f and Point E2h f for a point
in the Euclidean plane, one using Cartesian and the other homogeneous coor-
dinates (Chapters 1 and 16), one can use typename aliasing to switch from one
representation to another.

class Point E2c f
{
private:

float x, y;
public:

Point E2c f() : x(0), y(0) {}
Point E2c f( float x, float y )

: x(x), y(y) {}

bool operator==(const Point E2c f& P)
const

{
return (this == &P) ||

( x == P. x ) &&
( y == P. y );

}
};

class Point E2h f
{
private:

float hx, hy, hw;
public:

Point E2h f() : hx(0), hy(0), hw(1) {}
Point E2h f( float hx, float hy, float hw = 1 )

: hx(hx), hy(hy), hw(hw) {}

bool operator==(const Point E2h f& P)
const

{
return (this == &P) ||

are dependent(
hx, hy, hw,

P. hx, P. hy, P. hw);
}

};

This can be done by commenting out one of the following two typedef
lines:
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// typedef Point E2c f Point E2f;
typedef Point E2h f Point E2f;

int main()
{

Point E2f Pc1(2,3);
Point E2f Pc2(2,3);

assert( Pc1 == Pc2 );
}

In this approach, shown to be viable and adopted by the Library for Effi-
cient Data structures and Algorithms (LEDA) in its geometric components [67],
the application programmer typically creates an alias for each geometric type
used (point, line, segment, etc.). The aliases resolve to class implementations.
LEDA provides a set of classes based on Cartesian floating point (point, . . . )
and another set based on homogeneous arbitrary-sized integers (rat point, . . . ).

To change from one set of classes to another, a group of typename aliasing
lines is replaced by another. That the modification must be done for each class
used is a small inconvenience. A more serious limitation is that the design of a
given set of classes, or kernel, is final. Each class is aware only of those classes
that are in the same kernel. Making a modification to any class means that this
tight coupling is broken and that one must then reimplement all accompanying
classes.

Is there a way to design a geometric library such that one

1. may easily switch between Cartesian and homogeneous representations,

2. can extend a given set of classes with localized modifications, and

3. does not pay any run-time penalty?

The last constraint is crucial. The innermost loops of geometric algorithms
consist of manipulations on geometric objects. If the functions on these ob-
jects are not known at compile time, a penalty will be paid at run time in
accessing virtual function tables. Worse, not knowing which function will be
called prevents optimizers from inlining those functions that are reasonably
concise. This suggests that inheritance is a poor choice for an extension mech-
anism of geometric kernels.

18.2 Traits

A particular variation on traits is the answer. Traits [71, 112] is a mechanism
for defining functions on types. Both the argument as well as the return type
of a function are normally objects, but C++ templates make it also possible
to define a function that takes a type and that returns another type. Using the
class of classes in the Java language, Class (note the capital C), it is possible
to implement functions that take and return types. C++ goes further. The
evaluation is done at compile time.
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#include <cassert>
#include <typeinfo>

struct First { typedef int Parameter type; };
struct Second { typedef float Parameter type; };

template<typename T>
struct F
{

typedef typename T::Parameter type Return type;
};

int main()
{

typedef F<First>::Return type Return1;
typedef F<Second>::Return type Return2;

assert( typeid( Return1 ) == typeid( int ) );
assert( typeid( Return2 ) == typeid( float ) );

}

The class F acts as a function between types. It takes the argument T and
returns Return type. F is invoked on a given type such as First by instantiating
the concrete type F<First>. Once instantiated, Return type becomes an alias to
whichever type T (i.e., First here) declares as its Parameter type. Since the type
First::Parameter type resolves to int, that is also the type to which Return type
resolves.

The use of the keyword typename in

typedef typename T::Parameter type Return type;

is necessary. It signals to the compiler that the identifier Parameter type will
not resolve to an object but to a type (which it must for type aliasing to be
legal).

18.3 Nested Typedefs for Name Commonality in CGAL

Consider the two implementations Point E2c and Point E2h.

template<typename NT>
class Point E2c
{
protected:

NT x, y;
public:

Point E2c() : x(0), y(0) {}
Point E2c(

const NT& x,
const NT& y,
const NT& w=1)

: x(x/w), y(y/w) {}

bool operator==(const Point E2c<NT>& p)
const

{
return (this == &p) ||

( x == p. x) && ( y == p. y);
}

};

template<typename NT>
class Point E2h
{
protected:

NT x, y, w;
public:

Point E2h() : x(0), y(0), w(1) {}
Point E2h(

const NT& x,
const NT& y,
const NT& w=1)

: x(x), y(y), w(w) {}

bool operator==(const Point E2h<NT>& p)
const

{
return (this == &p) ||

are dependent( x, y, w, p. x, p. y, p. w);
}

};




	

��

186 INTRODUCTION TO CGAL

Rather than expose the two names Point E2c and Point E2h directly, the
two classes Cartesian and Homogeneous each contain a typedef statement
from the common name Point E2 to the corresponding Cartesian or homoge-
neous point class.

template<typename NT>
class Cartesian
{
public:

typedef NT Number type;
typedef Point E2c<NT> Point E2;

};

template<typename NT>
class Homogeneous
{
public:

typedef NT Number type;
typedef Point E2h<NT> Point E2;

};

The common name Point E2 will in turn be used for a class that is para-
meterized by the kernel: either Cartesian or homogeneous. Because Point E2
is derived from whichever class Kernel::Point E2 maps to, Point E2 effectively
becomes an alias for either class [6].

template<typename Kernel>
class Point E2 : public Kernel::Point E2
{

typedef typename Kernel::Number type NT;
typedef typename Kernel::Point E2 Base;

public:
Point E2(const NT& x, const NT& y) : Base(x, y) {}
Point E2(const NT& x, const NT& y, const NT& w) : Base(x, y, w) {}

bool operator==(const Base& p) const {
return this−>Base::operator==(p);

}
};

A program can then switch from one kernel to the other by changing the
instantiation of the kernel.
// typedef Cartesian<double> Kernel;
typedef Homogeneous<double> Kernel;
typedef Point E2<Kernel> Point E2f;

int main()
{

Point E2f Pc1(2.0f,3.0f);
Point E2f Pc2(2.0f,3.0f);

assert( Pc1 == Pc2 );
}

18.4 Defining a New CGAL Kernel

By way of example, let us make a small modification to the semantics of point
equality. That operator was defined in the Cartesian kernel using a Boolean
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shortcut. If one object is being compared to itself (via two references), true is
returned without incurring the more expensive cost of evaluating comparisons
on coordinates. Suppose, merely as a minimal example, that we wish two
objects to be equal only if an object is compared to itself. This would lead to a
class such as Point E2c new.

template<typename NT>

class Point E2c new
{
protected:

NT x, y;
public:

Point E2c new(const NT& x, const NT& y, const NT& w=1)
: x(x/w), y(y/w) {}

bool operator==(const Point E2c new<NT>& p) const {
return (this == &p);

}
};

Point E2c new is then aliased to Point E2 within New Cartesian; the new
kernel class is itself derived from Cartesian.

template<typename NT>

class New Cartesian : public Cartesian<NT>
{
public:

typedef NT Number type;
typedef Point E2c new<NT> Point E2;

};

The new kernel can be instantiated just as before, but now two distinct
point objects with identical coordinates are no longer equal.

typedef New Cartesian<double> Kernel;

typedef Point E2<Kernel> Point E2f;

int main()
{

Point E2f Pc1(2.0f,3.0f);
Point E2f Pc2(2.0f,3.0f);

assert( (Pc1 == Pc1) && !(Pc1 == Pc2) );
}

Coupling

Observe that the coupling between the Cartesian and the homogeneous repre-
sentations of a point remains visible in the implementation of Point E2. Be-
cause Point E2 resolves to either Point E2c or to Point E2h: the actual class
Base must provide constructors for two and three arguments. Since either
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template<typename Kernel>
class Point E2 : public Kernel::Point E2
{

typedef typename Kernel::Number type NT;
typedef typename Kernel::Point E2 Base;

public:
Point E2(const NT& x, const NT& y) : Base(x, y) {}
Point E2(const NT& x, const NT& y, const NT& w) : Base(x, y, w) {}

bool operator==(const Base& p) const {
return this−>Base::operator==(p);
}

};

Point E2c or Point E2h is the base class for Point E2, both classes must pro-
vide Cartesian and homogeneous constructors. In practice in both the case of
Point E2c

Point E2c::Point E2c(const NT& x, const NT& y, const NT& w=1)
: x(x/w), y(y/w) {}

as well as in that of Point E2h,

Point E2h::Point E2h(const NT& x, const NT& y, const NT& w=1)
: x(x), y(y), w(w) {}

only one constructor will do, but it is worthwhile noticing that the isolation is
not complete. Not that it is desirable for the isolation to be complete; if coordi-
nates are necessary to input data to a set of classes, but not needed for execution
(Chapter 17), and if it is easily isolated in the output stage, then it is of value to
make it possible for application programmers to switch between Cartesian and
homogeneous coordinates by changing one keyword, which makes it necessary
for both point classes to support two and three parameters.

18.5 Using Pointers in a Geometric Kernel

Consider a classical problem in computational geometry, segment intersection.
The input is a set of segments in the Euclidean plane and the output is the set of
segments that result from partitioning the input segments at intersection points.
Since an arbitrary number of segments may meet at a point, a reasonable way to
implement a segment intersection algorithm is to avoid representing the output
as a set of segments. Many of the output points may be shared, and so it makes
sense to compute the intersection points and then to create a special segment
class that stores pointers to a pair of points among the input and the intersection
points.

Using pointers simplifies subsequent equality tests since it then suffices to
compare the pointers rather than the coordinates. If the coordinate represen-
tation chosen is not of constant size (Chapter 7), pointers can potentially save
significant storage.
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Because this potential saving is true not just for segments, but for any geo-
metric object, it makes sense to design a geometric library based on such a
sharing principle. Such a design means that the onus for the details (refer-
ence counting and destruction) would be encapsulated in the geometric library
rather than be a task for application programmers. A point would be a wrap-
per for a pointer to a given point representation, and assignment operators and
copy constructors would copy the pointers rather than the representations.

18.6 Future Libraries

So far we have operated on the assumption that the type of the geometry in
which we perform computation needs to be specified at the outset. By contrast,
the graphics pipeline is notorious for being type-free. Such a view is perfect
for a hardware implementation, where values are treated in quadruples and the
interpretation of each quadruple depends on what one will finally do with it.

Is it too fussy to insist that in a simulation that precedes a hardware imple-
mentation, or in development entirely detached from such an implementation,
we would classify each stage of the graphics pipeline in the geometry in which
it operates? The notion is tempting, for it means that development is signifi-
cantly safer. We can then always interpret the validity and the significance of
the results.

One option for a sequel to CGAL [23] is to follow the outline given here.
Four distinct libraries are defined for Euclidean, spherical, projective, and ori-
ented projective (Stolfian?) geometries. Loose coupling is provided via a set
of functions or function objects.

But even though the four sets of geometries are distinct, their implemen-
tations share considerable similarities, which suggests that another option is
possible. Only classes and operations for oriented projective geometry are de-
fined. Which geometry is intended is left to the application programmer. Dis-
tinct predicates and other functions are provided in the library and the choice
of which predicates to use implicitly defines the geometry that the application
programmer has in mind. If one has in mind only prototyping a hardware im-
plementation, then T 3 would suffice; the dimension intended could also be left
to the application programmer, who would operate in a linear subspace (z = 0,
or y = 0 and z = 0).

Still, starting from a library for oriented projective geometry that then gets
specialized may be too type-constrained. Blinn debates whether an algebraic
layer that leaves the geometric interpretation implicit in the code may replace
an explicit geometric layer [16]. There are several levels to which such distinc-
tions can be made. At the limit, duality in non-Euclidean geometries makes it
possible for us to confuse such basic constructs as a point and a line. In P2

one may, for example, replace point and line classes with a single class. There
is then no need to define two predicates, one testing for the colinearity of three
points and the other for the concurrency of three lines. Since the two tests are
identical algebraically [26], it is possible to define a more malleable type that
gets used by clients in whichever way they wish to interpret it. Is facilitating
duality at the level of a geometry API desirable?
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The answer may in any case be a personal one. Many programmers flock
to type-rigorous languages such as C++ because no matter their focus most
of the time they would rather be spared having to search for bugs that could
have been caught by the type system. Others may prefer a looser system that
allows them to interpret results differently by changing a minimal set of, say,
predicate calls. If one chooses to deploy a library for use in a large system by
a variety of programmers, then accommodating those who prefer type safety is
likely the better option—even if they are not the majority, though they in any
case most probably will be.

To recapitulate, notice that the development of libraries in a computing
medium closely mirrors the abstract or mathematical view. To mirror the dis-
cussion at the conclusion of § 15.7, we note that if one takes two distinct points
and declares them the fundamental points on a line while permitting arbitrary
affine transformations, one gets E 1. If they are on a circle, but one allows
only rotations, one gets S 1. That the antipodal points of the two fundamen-
tal points are distinct is also a characterization of spherical geometry. If one
next identifies each pair of antipodal points and declares them the same “point”
(an observation first made, according to Coxeter [28, p. 13], by Klein), but al-
lows an arbitrary homogeneous linear transformation, one gets the projective
line P1. Declare the antipodal points distinct, and continue to allow an arbi-
trary homogeneous linear transformation, and one gets the oriented projective
line T 1.
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Part IV

Raster Graphics
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19 Segment Scan Conversion

Given a segment in the plane and a set of grid points, or pixels, we wish to flag
the set of pixels that would be an appropriate discrete rendition of the segment.
Finding the set is straightforward if we are content with using floating point
arithmetic, but since segment rasterization or segment scan conversion, the al-
ternative names for the problem, is performed many times in interactive and
real-time rendering, an algorithm that uses only integer arithmetic provides
significant gains. This chapter discusses Sproull’s derivation [102] of Bresen-
ham’s algorithm [21] using refactoring, or incrementally modifying a program
while verifying its correctness to enhance either its efficiency or its structure.

19.1 What Is a Pixel?

A raster image is displayed on a computer monitor as an array of pixels. A
pixel may be displayed on a cathode ray tube using three monochromatic phos-
phor discs and on a liquid crystal display as a set of rectangular, also mono-
chromatic, regions. Neither is adequate for defining a pixel.

The smallest addressable fragment of an image may be a suitable defini-
tion, but one must still remember that a pixel is not some minuscule square [101].
A pixel is indeed displayed as such a square only to interface with humans, but
the only correct abstraction for a pixel is a point in the (Euclidean) plane.

19.2 Raster Images

Before discussing how geometric objects can be converted from a continuous
to a discrete space—a process called rasterization or scan conversion—we
discuss a data structure that can capture the output. A raster image or, more
briefly, an image is a 2D array of grayscale or color values. Such a grayscale
or a color image is a useful abstraction of a raster display device. An image
consists of a 2D array of pixels, or picture elements.

Raster images of sufficiently high resolution can convey significant infor-
mation. Raster images can also be generated at enough speed that a sequence
of images can be faithfully perceived by an observer as an animation. The
information conveyed by a single pixel will arise from sampling some geome-
tric object at a point. Such information appears on a display device as a small
square, but this is merely so that it becomes perceptible. It is important to
remember that a raster image remains no more than a set of samples.
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A Class for a 2D Array

Since an image will be stored in a 2D array, we start by looking at a generic
class Array2.

template<class Type>
class Array2 {

typedef Color 4<unsigned char> Color 4uc;
friend class Image<Color 4uc>;
int xsize, ysize;
Type∗ table;

public:
void∗ getTable() const
{ return (void∗) table; }

void init(const Type& t)
{

table = new Type[xsize ∗ ysize];
for(int i=0; i< xsize ∗ ysize; ++i)

table[i] = t;
}

Array2() : xsize(2), ysize(2)
{ init(Type()); }

Array2(
int xsizein,
int ysizein,
const Type& t = Type())

: xsize(xsizein), ysize(ysizein)
{ init(t); }

virtual ˜Array2()
{

delete[] table;
}

Array2(const Array2& rhs)
: xsize(rhs.xsize), ysize(rhs.ysize)

{
table = new Type[xsize ∗ ysize];
for(int i=0; i<xsize∗ysize; ++i)

table[i] = rhs.table[i];
}

Array2& operator=(const Array2& rhs)
{

if(this != &rhs) {
delete[] table;
table = new Type[xsize ∗ ysize];
xsize = rhs.xsize;
ysize = rhs.ysize;
for(int i=0; i<xsize∗ysize; ++i)

table[i] = rhs.table[i];
}
return ∗this;

}

int getXsize() const { return xsize; }
int getYsize() const { return ysize; }
bool withinBounds(int x, int y) const
{

return
x>=0 && x<xsize &&
y>=0 && y<ysize;

}
// matrix is stored in row−order
const Type&
operator()(int x, int y) const
{

assert( withinBounds(x,y) );
return table[x + y ∗ xsize];

}
Type&
operator()(int x, int y)
{

assert( withinBounds(x,y) );
return table[x + y ∗ xsize];

}
};

The class needs no commenting, with the exception perhaps of the two
operator() functions. Recall that C++ permits overloading on const-ness. Us-
ing two functions makes it possible to return a const object when the array
object is const and to return a non-const object when the array object is not.

Defining grayscale or color images is discussed next, but notice that we
choose to break the encapsulation and declare one concrete color image type a
friend.

typedef Color 4<unsigned char> Color 4uc;
friend class Image<Color 4uc>;

Texture mapping requires access to an image. Since the two dimensional-
array used here for an image happens to coincide with the one expected when
the type is unsigned char, we avoid the penalty in efficiency that would arise
from proper encapsulation and make it possible instead to access the color
image directly.
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A Generic Image Class

We can likewise define a class for an image, which acts largely as a wrapper
for an Array2 object. The generic implementation will make it convenient to
generate multiple types of images.

template<typename PixelType>

class Image
{
protected:

int xres, yres;
Array2<PixelType> H;

public:
Image() : xres(0), yres(0) {}
Image(int xres, int yres) : xres(xres), yres(yres), H(xres, yres) {}

int xres() const { return xres; }
int yres() const { return yres; }
const PixelType& operator()(int x, int y) const
{

return H(x,y);
}
PixelType& operator()(int x, int y)
{

return H(x,y);
}

};

A Color image class as well as a GrayscaleImage class can now be instan-
tiated.
template<typename ColorUnit>
struct Color 4 {

ColorUnit r,g,b,a;
};

typedef Image<Color 4<float> > Color image; // floats range from 0 to 1
typedef Image<char> GrayscaleImage;

Since at this point we are merely interested in testing the correctness of seg-
ment rasterization and comparing the efficiency of more than one approach, we
will be content with the following rather rudimentary function for displaying
Boolean images:

ostream& operator<< (ostream& os, const Image<bool>& I)
{

for(int y=I.yres()−1; y>=0; −−y) {
for(int x=0; x<I.xres(); ++x)

os << (I(x,y) ? ’x’ : ’.’);
os << endl;

}
return os;

}
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19.3 Segment Rasterization

The function B8 below implements a segment rasterization algorithm due to
Bresenham [21], but rather than show the algorithm directly, we present a
derivation of the algorithm due to Sproull [102]. The derivation is particu-
larly delightful, not least because it shows how a discovery can be reduced to
mere labor.

We assume that pixels lie at integer grid points and that an object Point E2i
captures the integer coordinates of such points.

struct Point E2i {
int x, y;
Point E2i(int x, int y) : x(x), y(y) {}

};

We also assume that the segment has integer coordinates, that one of its end-
points lies at the origin and the other at P (x, y), and that x >= y >= 0. The
line thickness is informally assumed to be a single pixel. This suggests that a
suitable representation for segments lying in the first octant is to iterate over
the x values and generate one pixel. Segment rasterization reduces to finding
the integer y-coordinates.

Notice that it is unnecessary to specify that pixel centers are meant. A
pixel is a Boolean sample, and the array of Boolean samples constituting the
Boolean image will eventually be mapped to two tones for suitable display.
The segment is informally of unit width because, as can be easily confirmed,
the area covered by the line decreases as its slope approaches that of x = y.
This is not ideal, since a rotating segment will appear to change tone, but we
worry here only of generating the Boolean samples. This is in any case as
well as we can do when visualizing a Boolean array (using either squares or
circles).

The first function for rasterizing a segment simply iterates over the integer
x values, which are multiplied by the slope of the segment. The resulting
float yt is then rounded to the nearest integer.

void B1(Image<bool>& I, const Point E2i& P)
{

float yt;
int xi = 0, yi;

float Py by Px = float(P.y) / float(P.x);
while(xi <= P.x) {

yt = Py by Px ∗ float(xi);
yi = int(std::floor(yt + 0.5)); // floor returns float
I(xi, yi) = true;
++xi;

}
}

But rather than incur the cost of a floating point multiplication at each
iteration by writing yt = Py by Px ∗ float(xi), a floating point addition can be
used instead.
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void B2(Image<bool>& I, const Point E2i& P)
{

float yt = 0;
int xi = 0, yi;

float Py by Px = float(P.y) / float(P.x);
while(xi <= P.x) {

yi = int(std::floor(yt + 0.5));
I(xi, yi) = true;
yt += Py by Px;
++xi;

}
}

A second program transformation initializes the floating point variable to
0.5 and thus avoids one floating point addition in the body of the loop.

void B3(Image<bool>& I, const Point E2i& P)
{

float ys = 0.5;
int xi = 0, yi;

float Py by Px = float(P.y) / float(P.x);
while(xi <= P.x) {

yi = int(std::floor(ys));
I(xi, yi) = true;
ys += Py by Px;
++xi;

}
}

We can now see what happens at each iteration. The increment in x may
or may not cause an increment by 1 in y. This can be explicitly simulated by
storing a residue. The residue is incremented by the slope at each iteration. It
is only if the new residue exceeds unity that y is incremented (and the residue
decremented accordingly). The value of y is now stored as the sum of an
integer component ysi and a floating point component ysf.

void B4(Image<bool>& I, const Point E2i& P)
{

float ysf = 0.5;
int xi = 0, ysi = 0;

float Py by Px = float(P.y) / float(P.x);
while(xi <= P.x) {

I(xi, ysi) = true;
if(ysf + Py by Px >= 1) {

++ysi;
ysf += Py by Px − 1;

}
else

ysf += Py by Px;
++xi;

}
}
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Our final objective will be to make the computation use only integers; thus,
we now avoid the floating point division by multiplying by 2Px. One of the
two values v1 and v2 is now added to the residue r.

void B5(Image<bool>& I, const Point E2i& P)
{

float r = float(P.x);
int xi = 0, ysi = 0;

float v1 = 2.0 ∗ float(P.x) − 2 ∗ float(P.y);
float v2 = 2.0 ∗ float(P.y);
while(xi <= P.x) {

I(xi, ysi) = true;
if(r + v2 >= 2 ∗ P.x) {

++ysi;
r −= v1;

}
else

r += v2;
++xi;

}
}

It is now unnecessary to use floating point variables. They can be replaced
by integers.

void B6(Image<bool>& I, const Point E2i& P)
{

int r = P.x;
int xi = 0, ysi = 0;

int v1 = 2 ∗ P.x − 2 ∗ P.y;
int v2 = 2 ∗ P.y;
while(xi <= P.x) {

I(xi, ysi) = true;
if(r + v2 >= 2 ∗ P.x) {

++ysi;
r −= v1;

}
else

r += v2;
++xi;

}
}

Because a comparison with zero is faster since only one bit is tested, an
incrementally minor modification discards the comparison with 2Px.

void B7(Image<bool>& I, const Point E2i& P)
{

int r = − P.x;
int xi = 0, ysi = 0;

int v1 = 2 ∗ P.x − 2 ∗ P.y;
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int v2 = 2 ∗ P.y;
while(xi <= P.x) {

I(xi, ysi) = true;
if(r + v2 >= 0) {

++ysi;
r −= v1;

}
else

r += v2;
++xi;

}
}

Finally, we avoid adding v2 inside the loop, resulting in Bresenham’s seg-
ment rasterization algorithm.

void B8(Image<bool>& I, const Point E2i& P)
{

int r = 2 ∗ P.y − P.x;
int xi = 0, ysi = 0;

int v1 = 2 ∗ P.x − 2 ∗ P.y;
int v2 = 2 ∗ P.y;
while(xi <= P.x) {

I(xi, ysi) = true;
if(r >= 0) {

++ysi;
r −= v1;

}
else

r += v2;
++xi;

}
}

Running any of the functions above via a code snippet such as

Point E2i P(11,7);
Image<bool> I1(12,12); B1(I1, P); cout << I1 << endl;

yields the following ASCII art.

............

............

............

............

...........x

.........xx.

........x...

......xx....

....xx......

...x........

.xx.........
x...........

Since compiler-performed optimizations may perhaps render unnecessary
one or more of the optimizations performed explicitly above, it is interesting
to compare the running time of each under a different compiler optimization
level. Running the eight preceding routines on a modern CPU and a modern
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Optimization B1 B2 B3 B4 B5 B6 B7 B8
Level
none 4.35 3.92 4.38 2.64 2.60 2.50 2.38 2.35

1 2.07 1.71 1.31 0.67 0.64 0.53 0.51 0.50
2 2.07 1.88 1.76 1.03 0.53 0.52 0.47 0.44
3 1.97 1.75 1.25 0.74 0.83 0.63 0.64 0.42

compiler (at the time of this writing) yielded the relative running times shown
in the table.

Particularly intriguing is the increasingly more aggressive optimization
possible as the algorithm is incrementally optimized by hand.

More than one possible partition of the target pixels into octants is possible,
and a few symmetric cases round up the implementation and testing.

19.4 Exercises

19.1 Modify the start-up code labeled “segment-rasterization” to use only in-
teger arithmetic while still handling all eight octants correctly.

19.2 This question connects this chapter with Chapters 7 and 23.

Often when generating ray-traced images, one uses the following op-
timization. The smallest sphere bounding each set of objects is deter-
mined. Before intersecting the objects within, the bounding sphere is
tested. If a ray does not intersect it, there is no need to intersect the
objects within.

This strategy is useful even if the ray-traced object is also a sphere. De-
velop a system for ray tracing one sphere by shooting parallel rays. To
find the nearest intersection of a ray and a sphere, substitute in the equa-
tion of the sphere with P + α−→v for a ray (P,−→v ). Now implement
the following optimization. Before finding the intersection, determine
whether there is one by calculating the distance from the ray to the cen-
ter of the sphere.

Using one ray for each pixel in a raster image, determine the intersection
using both the optimization and the actual test (then discard the value
of α). Generate a raster image that highlights the pixels in which the
two methods disagreed.
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20 Polygon-Point Containment

This chapter discusses several strategies to determine whether a point is con-
tained in a polygon. The batch versions of the problem, by having either mul-
tiple polygons, multiple points, or both, arise sufficiently frequently to warrant
special attention.

20.1 Rays

One fundamental object in geometric computing in the Euclidean plane, yet
one that was not introduced in Chapter 1, is that of a ray. A ray consists
of the set of points P + αD for α ≥ 0, a point P , and a direction D. At
times it will be necessary to capture the notion of a ray such that α > 0.
The set of points is still unbounded but is now also open at the point P . Yet
because the two possible notions of a ray share the same attributes and most
properties, it would be undesirable to capture them separately. Recall, for
instance, that the distinction between an open and a closed halfplane in E 2

was not made explicit, but that both abstractions relied on that of a directed
line; the client program is asked to partition the three possible orientations
(left, right, colinear). Here also only one ray is defined. Functions seeking an
open or a closed abstraction will need to cater for that need individually. It is
in general clear from the context whether an open or a closed ray is intended.
In particular, the ray is by default closed in discussions involving polygon scan
conversion (this chapter) and open in ones involving ray tracing (Chapter 23).

typedef<typename T>

class Ray E2
{

Point E2<T> source;
Direction E2<T> direction;

public:
...

};

20.2 Convex Polygon-Point Containment

We are given one polygon and one point, and we wish to determine whether the
point is inside the polygon. The batch version of the problem, discussed next,
handles the case when containment needs to be determined for many points.




	

��

202 POLYGON-POINT CONTAINMENT

Convex Polygon-Point Containment by Halfplane Testing

If only one polygon is considered, it is customary to assume that the polygon
is a closed set—i.e., it includes the points on its boundary. If the polygon
is convex, orient its n vertices counterclockwise and form n oriented lines
along consecutive segments on the boundary. The set of points contained in
the polygon is the set of points that simultaneously lies to the left or on each
line.

Determining n-gon-point containment then reduces to the evaluation of n
3×3 determinants. If one determinant is less than zero, the point is outside the
polygon. The test involves 9n multiplications and 5n additions/subtractions.

20.3 Concave Polygon-Point Containment

An alternative strategy, suitable for concave as well as convex polygons, is
to “shoot” a ray from the query point in a given direction (say the positive
x-direction). The general idea is to count the number of intersections. If the
number is odd, the point is inside the polygon. If it is even, the point is outside.
Before mentioning a strategy that does work, it is instructive to examine a few
that fail.

1

3
2

A special strategy must be taken to handle cases when the ray intersects
the boundary of the polygon at one or more vertices. It is clear that each
vertex cannot be counted twice—as belonging to both adjacent segments, for
otherwise a point inside the polygon could have an even count, leading to the
conclusion that it is outside the polygon (and vice versa). That would be the
case for points with coordinates (x, y) if a polygon vertex is at (x′, y), x < x′.2?

A tempting answer is to associate each boundary point with only one of
the two adjacent segments in counterclockwise order around the boundary.
But considering that the segments on the boundary of the polygon are open
at one end, say the target side, and closed on the side of the source can also
lead to concluding incorrectly that a point inside the polygon is outside (and
vice versa).

1 + 1 = 2 =⇒ outside?
And so the segments need to be oriented not with respect to their order

around the polygon, but in the orientation of their projection on a direction
orthogonal to the direction of the ray. Count, say, an intersection with a seg-
ment at its endpoint with the smaller y-coordinate, but not at the endpoint with
the larger y. This strategy computes the correct result at points A, B, and C.
Some strategy still needs to be adopted for points such as D, which are on hor-
izontal segments. The segment may bound the polygon either from above or

A

BC

D

E

F

from below, and any of the above strategies will be seen to lead to inconsistent
classifications.

At this stage it is useful to diverge from the method adopted for handling
points on the boundary of a convex polygon. If a query point coincided with
the boundary of a polygon, the point was classified as contained in the polygon.
What if the concave polygon was considered instead to be one of many poly-
gons sharing boundaries? A consistent strategy is to assume that horizontal

≤
<

ignored

segments are contained in the polygon above the segment, but not the polygon
below the segment.
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20.4 Mesh Pixel Partition

In one batch version of the polygon-point containment problem we wish to
partition a set of points into those lying inside (or on the boundary) and those
lying outside the polygon. In the second we are given a mesh, or a set of
polygons sharing boundaries, and are asked to partition the points into the
polygon to which each belongs, if any. The second problem captures the first,
and so we discuss it next.

The strategy outlined for a concave polygon is exactly the one that needs to
be adopted for meshes—for both convex as well as concave polygons. Points
in polygon interiors are easily classified. The difficulty lies in establishing
rules for points lying on the boundaries between polygons.

Two rules summarize how to classify points in the interior of edges:

• If the neighborhood (x + ε, y) on the right of the boundary point (x, y)
is inside some polygon, then the point is classified in that polygon.

• Points (x, y) on boundaries parallel to the x-axis are classified in the
polygon at the neighborhood (x, y + ε).

Two rules summarize the classification of points coincident with vertices:

• A vertex of the mesh with coordinates (x, y) is classified in the polygon
containing (x+ ε, y).

• If the first rule is ambiguous (the adjacent edge is parallel to the x-axis),
the vertex is classified in the polygon containing (x+ ε, y + ε).

Figure 20.1 illustrates the set of rules for a given mesh. We can now ignore that
the problem is to be solved on a regular grid since we have just seen that the
correctness of a solution for a regular grid relies on unambiguously classifying
each point in E 2(R), the set of points in the Euclidean plane with real coor-
dinates. In the figure, vertices and edges are highlighted (darker marks/bolder
edges), to indicate the polygon into which they are classified.

Figure 20.1
Partitioning points in the plane to
triangles in a mesh

20.5 Exercises

20.1 Determine the barycentric coordinates of the pointsP1(5, 5) andP2(3, 5)
in the triangle (0, 0), (10, 0), (0, 10) in the Euclidean plane. Conclude
with the characterization for a point inside a triangle.
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20.2 The start-up code labeled “rasterize-polygon” lets the user draw a poly-
gon by rubber-banding. The polygon is then rasterized by repeatedly
performing polygon-point containment. Modify the code to scan-convert
an arbitrary simple polygon efficiently.

20.3 Modify the start-up code labeled “rasterize-polygon” to display a mesh
of a few triangles whose vertices move along a small circular trajectory.
The code provided accumulates the effect of the rasterization; pay par-
ticular attention to the cases when mesh vertices or edges overlap pixels.
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21 Illumination and Shading

Several functions—some physical, some heuristic—are used to generate smoothly
varying colors. These shading functions are the topic of this chapter.

21.1 Diffuse Shading

To shade a point on a surface is to compute a color that captures the lighting at
that point. Shading is a function that takes light parameters, material parame-
ters, and the surface normal vector and returns an estimate of the color seen at
the (infinitesimal) point on the surface shaded.

To shade a pixel is to fill the square that represents the pixel’s sample point
using the shading of the object visible through a ray passing by the pixel’s
sample point.

−→
E

−→
N −→

L
φ

The diffuse shading resulting from each light source is given by

Id = ρd(
−→
N ·

−→
L ),

where ρd is the diffuse color of the surface,
−→
N is the surface normal direction,

and
−→
L is the light direction. (A direction is a distinct type for a normalized

vector; see § 1.3 and § 3.2.) Since
−→
N and

−→
L are directions, their dot product

−→
N ·

−→
L will range from −1 to 1. If

−→
N ·

−→
L ≤ 0, no lighting from that light

source will impinge the surface, and its contribution to the total illumination
should be discarded.

If a colored light source is used, the equation is modified to

Id = ρdLd(
−→
N ·

−→
L ),

where Ld is the diffuse color of the light source.
Recall that if the angle separating

−→
N and

−→
L is θ and the two vectors are

normalized (directions), then
−→
N ·

−→
L = cos θ.

21.2 Specular Shading

A mirror or mirror-like surface would reflect incoming light in exactly the re-
flection direction. A larger class of surfaces, glossy surfaces, would reflect the
light in some distribution that rapidly falls off from the reflection direction [80].

The input to a specular shading function consists of the eye direction
−→
E ,

the normal direction
−→
N , and the light direction

−→
L . The output is a scalar
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multiplier for the inner product of the specular material and the specular light
coefficients. To determine how far

−→
E and

−→
L are to be the reflection direction

of each other, the halfway direction
−→
H is defined as their sum:

−→
H =

−→
E +−→

L [12]. The dot product of
−→
H and

−→
N determines the specular coefficient. To

make it possible to tailor the size of the highlight to a more or less specular
surface, an additional term, the Phong coefficient c, is used as the power of
−→
N ·

−→
H . The expression for specular lighting becomes

Is = ρsLs(
−→
N ·

−→
H )c.

−→
E

−→
N

ψ

−→
H −→

L

21.3 Ambient Shading

The combined contribution of diffuse and specular lighting generates synthetic
pictures with unusually large variations in light to dark areas, which do not
reconcile with our experience of scenes lit by even a small number of (point)
light sources. The discrepancy is due to light interreflection: A fraction of the
light impinging a surface is reflected according to a surface-specific distribu-
tion, called the bidirectional reflectance distribution function, or BRDF. The
stable state reached by the interreflection in natural environments leads to all
surfaces acting as secondary light sources. The field of global illumination
studies methods for generating synthetic images, taking into account light in-
terreflection. A simple heuristic that is frequently used in real-time systems is
to add a constant to account for ambient light. A general scene contribution A
as well as a light-specific factor, La, and a surface-specific factor ρa, make it
possible to fine-tune the heuristic to the desired lighting effect:

Ia = A+ ρaLa.

To shade a single point, the sum of the three above terms is computed for each
light source not hidden from the point:

I = Ia + Id + Is.

The three cross-sectional distributions shown in Figure 21.1 illustrate the
relative contributions of ambient, diffuse, and specular lighting.

Figure 21.1
Ambient, diffuse,

and specular shading

−→
N

−→
L

−→
N

−→
N

ambient
+

diffuse (per light)

−→
L

−→
L

specular (per light) a + d + s

21.4 Gouraud and Phong Shading

The previous discussion assumes that normal vectors are defined for each face
in a scene. Even though the eye and light directions would be distinct for each
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pixel rendered, the variation in illumination is in practice minuscule for the
number of operations performed. Two options are possible. In the first, the
number of operations will be significantly reduced, while images of compara-
ble quality are obtained. In the second, the number of operations will be kept
almost the same, but the quality of the image will be significantly increased.

Gouraud Shading

If the model defines normal directions for each vertex rather than for each face,
the shading I can be determined at each vertex of a polygon. At the intersection
of each scanline with the edges of a polygon, one may then interpolate colors,
first along the edges AB and DC of the polygon rasterized and then between
the two intersections [42]. Gouraud interpolation would thus be performed
alongside depth interpolation (Chapter 22).

scanline

A

B
C

D

pixels

Phong Shading

Alternatively, the normal directions can be interpolated along the edges of a
polygon and then along each scanline [80]. The interpolated normal is used
to shade the pixel. Even though Phong shading still has no physical basis, the
rendering obtained considerably hides Mach bands, the tendency of the human
visual system to accentuate lines of difference in shading.

A

B
C

D

21.5 Exercises

21.1 Write a program that renders a shaded sphere orthographically projected
onto a raster image. Generate three images with different Phong coeffi-
cients.

21.2 Repeat Exercise 21.1 using a sphere coarsely triangulated along longi-
tude and latitude lines. Compare the shading obtained when the image is
generated using Gouraud shading with that obtained under Phong shad-
ing.

21.3 Modify the start-up code labeled “capoman” to implement a simple game.
The objective of the game is for the player to run over three prey objects
while navigating a maze within a time limit. Read Appendix B and then
tackle the following brief milestones.

• Add a set of outer walls in addition to a minimum of two interior
walls. Both outer and inner walls must have a ”thickness” and so
should be modeled by more than just one polygon (see Chapter 26).
They should also have a ”top” since we are looking down on the
maze. Try first to use very few polygons, and then confirm after
you add the flashlight that the lighting looks reasonable. If it does
not, subdivide the wall polygons into a higher-density mesh.

• Add three objects (e.g., cylindrical prey—see §C.10) moving in
the free space (between the walls). The path of the cylinders may
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be a parametric function in time [x = x(t), y = y(t)] with or
without tangent continuity.

• Simulate each cylinder’s illumination of the path in front of it using
a flashlight (study the sample code described in §B.8).

21.4 This is a continuation of Exercise 21.3.

The objective is for the player to run over the prey (the three cylinders)
within a time limit (say 20 seconds).

1. Introduce a player controlled by the keys (a/s/d/w). Choose your
own object for the player (e.g., assemble a few glutSolidCube-s—
see §C.10).

2. Add controls to ensure the player does not penetrate walls.

3. Add a counter showing the number of prey so far hunted.

4. Animate the capturing of a cylinder by displaying it spinning “in
the air.” The game should not be interrupted while the animation
is in progress.

5. The cylinders should always take the path directed away from the
player.

21.5 This is a continuation of Exercise 21.4.

Solve Exercise 12.6 and then modify your work in Exercise 21.4 to ren-
der shadows for the player and for the prey from an omnidirectional light
at an affine point. Do not render either the shadows of the walls or any
shadows from the flashlights.
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22 Raster-Based Visibility

We wish to render a raster image of a set of polygons. The polygons have
already been transformed (§ 15.5) and clipped (§ 5.4) to the unit cube. We lay
a grid over one side (xy) of the cube and define a set of rays at the pixels in-
duced by the grid. Each pixel conceptually spawns a ray (Chapter 23), and we
wish to solve the batch intersection problem: Find the intersection of n rays
with polygons of e total edges in time significantly lower than Θ(ne). The
need to find the answer at only a discrete set of samples simplifies the problem
considerably compared to a vector solution (Chapter 32). The two algorithms
described, Z-buffer and scanline, take advantage of this discretization in addi-
tion to the fact that the discrete samples are equally spaced on the grid.

22.1 Pixels on a Scanline

In the polygon-point containment problem discussed in Chapter 20 we deter-
mined whether one point lies inside one polygon. The next natural question to
consider is the improvement that can be achieved if the input consists of many
points. If the p-sided polygon is star-shaped (all interior and boundary points
are visible from a point in the polygon’s kernel—the intersection of the half-
spaces defining the boundary), we would search in a radial list of the vertices
[in time O(log p)] to determine whether the query point is inside the poly-
gon. This strategy is also applicable to convex polygons, which are a subset of

kernel

star-shaped polygons.
Even if the convex or star-shaped polygon will be queried at many points,

it is unlikely that searching in a sorted list would produce practical gains. One
way for making gains when batch searching using a large set of points is to
exploit the structure of the points. Since the points arise as pixels, they are
arranged on a grid. If the grid lines are parallel to the x- and y-axes, a set of
pixels on a single line parallel to the x-axis are said to form a scanline. It is
then more efficient to determine the first and the last pixel on the scanline to
which the edges of the polygons rasterize and to fill each consecutive set of
pixels by the index (or color/shading) of the polygon.

22.2 The Z-Buffer

Just as a raster image consists of a 2D array of color (shading) values, the Z-
buffer is a 2D array of depth values. The purpose of saving these depth values
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is to resolve visibility at these discrete values. Nothing more is known during
processing, but neither is anything needed to construct a raster image.

To resolve visibility, one iterates over the polygons and rasterizes each
polygon while determining its depth (z) at each pixel. If the depth is smaller
(closer to the viewer) than the z value already stored at that pixel, both the
depth and the color at that pixel are updated. If the depth is larger (farther
than the viewer), neither is updated. To rasterize a polygon, the intersection of
its edges with scanline is determined. Each pair of consecutive intersections
define a set of adjacent pixels that can be handled by modifying the polygon’s
z value using the polygon’s slope in the plane of its intersection with the scan-
line.

d 1

d 2

22.3 The Active Edge List

The active edge list exploits the following observation. If the consecutive sets
of pixels that need to be written are known at one scanline, subsequent sets can
be modified by adding a constant factor for each bounding edge. The factor is
simply the product of the slope of the line by the distance between the scanlines
(perhaps unity).

In the adjacent figure the scanlines can be partitioned into three sets. For
each consecutive scanlines in one set, the intersection of the polygons’ edges
remains identical, even if the locations of the beginning and end of intersec-
tions vary. Three active edge lists need to be created for the three distinct sets,
but the three lists are so similar that it is only necessary to create the first list.
The subsequent ones can be determined by updating from a prior list and by
consulting the edge table.

3
5

2

4

1

4

41

L

L

3 2 5

3 2

L 2

22.4 The Edge Table

The active edge list is updated incrementally at each scanline with the new
location of the intersections. Occasionally, it is also necessary to insert or
delete list items when the endpoint of an edge is encountered. If the endpoints
are sorted by y value into a list, the changes can be made in the order they arise
in the list [83].

Because the change in the active edge list triggered by the edge table is
minuscule (an edge is inserted, an edge is deleted, or two edges swap order),
it is sufficient to resort an already nearly sorted list using bin sorting. Also,
because a raster image has only finitely many scanlines, a table with as many
entries as there are scanlines is created and the endpoints of the edges are
inserted into the table at the entry corresponding to their scanline [113]. Each
entry is also flagged to indicate whether an edge will be inserted or deleted
when that scanline is processed. The resulting edge table is consulted at each
scanline to determine if any updates need to be made to the active edge list.
The use of an edge table and an active edge list makes it possible to reuse the
set of depth values for each scanline.

3
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22.5 The Graphics Pipeline

We consider the graphics pipeline one last time and discuss the appropriate
stages for visibility and for shading.

E3 T 3 E3 E2V P Dclip \z+1
T 3 T 3 T 3M

T 3

The natural stage to perform raster visibility is in E 3 following perspective
divide. At that point perspective has been performed, all projectors are parallel,
the polygons have been clipped, and the polygons have been mapped back from
T 3 to E 3. We also assume that the value of the depth z will be discarded at
the same stage.

By specifying that the geometric data lies in E 3 or in T 3, we implicitly
meant that they are in E 3(R) or in T 3(R): The geometric objects are parame-
terized by a number type capturing the reals in the corresponding space. To
distinguish the final stage, in which a set of pixels with integer coordinates in
the Euclidean plane is considered, we explicitly identify that stage as E 2(N).

E3 T 3 E3 E2(N)V P Dclip Vis+1
T 3 T 3 T 3M

T 3

Shading, on the other hand, can only be performed under accurate angles.
The first transformation in the pipeline that destroys angles is the perspective
transformation P . That is also why shading must be performed before P is
applied:

E3 T 3 E3 E2(N)V P Dclip Vis+1
T 3 T 3 T 3M

T 3 Shade
T 3

This explains that even though shading is applied only to attributes of the
geometry rather than to the geometry itself (much as we will see in § 29.2), the
stage at which shading is computed must be specified within the pipeline.

The discussions on the Z-buffer and scanline visibility conclude the se-
quence of operations that need to be performed to produce a raster image
(§ 19.2) from a set of polygons. In the most common scenario these polygons
describe a solid (Chapters 26 and 27) in Euclidean space (Chapter 3). The
polygons are mapped to projective space and then projected on an image plane
(Chapter 11). After clipping (Chapter 15), perspective divide (Chapter 12) is
applied and the polygons are back in Euclidean space. Their orthogonal pro-
jection is the input to raster visibility.

22.6 Exercises

22.1 a. Implement a system that generates a random n-sided convex poly-
gon.
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b. Implement a point-inside-a-convex-polygon system that searches
in the sorted list of the polygon’s vertices and reports whether the
query point is inside the polygon.

22.2 a. Implement a system that generates a random n-sided star-shaped
polygon.

b. Implement a system that computes the kernel of a star-shaped poly-
gon and, if the interior of the kernel is not empty, reports a point
inside the kernel (say the centroid).

c. Implement a point-inside-a-star-shaped-polygon system that searches
in the sorted list of the polygon’s vertices and reports whether the
query point is inside the polygon.

22.3 Implement a system that rasterizes a convex polygon using an edge table
and an active edge list.

22.4 Compare your solution for Exercises 22.1 and 22.3. Is there a value
of n (the number of sides of the polygon) at which you believe binary
searching will take over the edge table in actual time?
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23 Ray Tracing

Light illuminates scenes by the collective impinging of a large number of pho-
tons that start at a light source. We perceive views of scenes by the arrival on
our retinas of a subset of photons reflected from the scenes we observe. Ray
tracing is an illumination model that makes it possible to simulate glossy and
transparent surfaces by recursively constructing then casting rays at surface in-
tersections [118]. The tracing of rays is performed in the direction opposite to
that traversed by the photons.

23.1 Ray Casting

Casting a ray in (Euclidean) space refers to generating a single ray and in-
tersecting it with the scene geometry. The nearest intersection determines the
surface visible, which is then shaded (Chapter 21) to generate an image.

d1

d2

d3

Spawning Rays from the Viewer

In the Z-buffer algorithm a raster image is generated by iterating over the poly-
gons in a scene and determining the depth of each polygon at each pixel at
which the polygon is rasterized. An alternative pixel-based approach is possi-
ble. A ray is generated for each pixel in the raster image and the first visible
scene polygon is determined and shaded.

To find the set of rays that need to be cast to generate an image, the three
vectors defining an orthogonal view transformation (§ 4.7) are determined from
a view direction and an up vector. The view angle and the resolution of the
image are then used to determine the increments on the image plane (which is
parallel to −→u and −→v ).

−→u

−→v −−→n

The primitive operation performed once a ray is initialized will be to cast
the ray by perhaps launching the ray using a function such as the following:

Color 3f ray cast(const Scene& scene, const Ray E3d& ray)

23.2 Ray-Polygon Intersection

If the scene is defined using a set of polygons, determining whether a ray inter-
sects one polygon can be done by intersecting the ray with the plane carrying
the polygon then determining whether the intersection point lies inside the
polygon. Ray-polygon intersection may be used for both convex and concave
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polygons (§ 20.3). Yet determining whether the intersection point lies inside
the polygon cannot be performed in 3D space. The difficulty is numerical. If a
ray is issued from the intersection point, all its intersections with the edges in
3D will most likely not be detected. It is thus necessary to project the polygon
and the ray on an arbitrary plane and to perform the point-inside-a-polygon
test in the 2D projection. It is easiest to perform the projection on one of the
coordinate planes, since the projection is then simply a matter of discarding
one coordinate, but it is crucial to choose that plane such that its normal is
the dominant axis (§ 3.7) to the plane carrying the polygon. At the extreme,
the polygon is parallel to, say, the xz-plane (±y-dominant) and the projection
must be done on that plane.

23.3 Reflection

In addition to specular shading (§ 21.2), one can determine the surface that
would be seen if the ray incoming from the eye were to be reflected on the
surface. The shading of that surface is used to calculate the shading in the
direction of the eye. The ray

−→
R is the reflection of the eye ray

−→
E at the point

of intersection of
−→
E with the surface. If the data type Direction E3 (§ 3.2) is

used to capture the normalized vector of the ray, then the vector part of the
reflected ray can be determined simply by computing

−→
R =

−→
E + 2

−→
N .

The direction in which rays are traced (that of
−→
E and

−→
R ) is called in computer

graphics, by convention, the forward direction of the ray, even though that is
the opposite of the direction of the simulated photon.

−→
E

−→
N

−→
R

θ θ

23.4 Refraction

Refraction is another visual effect that can easily be simulated by ray tracing.
When an incoming ray

−→
E traverses from one medium to another, its angle of

incidence θ and its angle of refraction ξ are related by Snell’s law. If the speed
of light is vθ in the source medium and vξ in the target medium, the angle of
refraction can be determined by

sin(θ)
sin(ξ)

=
vθ
vξ
.

−→
E

−→
N

−→
R

θ

ξ

23.5 Recursion

The distinction between ray casting and ray tracing is the following. Ray cast-
ing is the process of finding the intersection of a single ray with a scene and
returning either the nearest surface intersected or the lighting at that surface.
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Ray tracing is the illumination model resulting from casting successive gener-
ations of rays starting from one ray spawned at one sample point (pixel) in the
image.

Reflection and refraction are simulated by casting additional rays. Since
these two rays would be implemented using two function invocations while
the same ray-casting function is executing, ray tracing is compellingly imple-
mented using recursion.

23.6 Exercises

23.1 Implement a system for generating ray-traced images of a set of spheres.

23.2 Implement a system for generating ray-traced images of a set of trian-
gles.

23.3 Plücker coordinates were discussed for lines in P3 in §12.4, but an iden-
tical formulation is suitable for representing lines in oriented projective
space T 3. One only has to ensure that the order of the two points defin-
ing a line is maintained [104]. The significant additional benefit is that
one line then partitions the set of lines in T 3 into three sets: those that
lie on one side or the other and those that intersect it. Write a function
that performs this classification.

23.4 Extend Exercise 23.3 by writing a function that determines whether a
ray intersects a triangle in space using Plücker line coordinates.

23.5 Repeat Exercise 23.2, but use your solution for Exercise 23.4 to deter-
mine quickly whether a line intersects a triangle. If you isolate (and
ignore) the time needed for shading, how do the two implementations
compare in running time? The coordinates for the lines bounding the
polygons must naturally be cached.

23.6 Repeat Exercise 23.1, but add reflection, refraction, and shadows.

23.7 Repeat Exercise 23.2, but add reflection, refraction, and shadows.
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Part V

Tree and Graph Drawing
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24 Tree Drawing

Humans frequently visualize trees while discussing algorithms. Such visual-
ization aids the comprehension of algorithms on trees and facilitates debugging
implementations of tree algorithms. This chapter discusses two algorithms for
drawing trees.

It is useful to make a distinction between drawing a tree and finding an
embedding. Finding an embedding refers only to associating (2D Euclidean)
points to nodes, whereas drawing refers in particular to the process of generat-
ing the drawing, though finding the embedding may also be understood to be
part of the drawing process. Rank embedding is discussed in § 24.2 and Tidier
embedding in § 24.3. Section 24.4 discusses the drawing proper.

24.1 Binary Search Trees

The embedding algorithms are parameterized by a type Node that captures a
node in a binary search tree. For simplicity we implement binary search trees
using a single class, although in practice distinguishing the notion of a tree by
implementing a second class may be desirable. A tree class would act as a
wrapper that delegates client requests to the root of the tree. Using a single
Node class means that an empty tree would be represented directly by a NULL
pointer, or no object at all, rather than indirectly to a NULL root through a
pointer to a tree object.

A binary tree is one in which each node has zero, one, or two children.
Each node in a tree will usually store some information, including a key. As-
suming keys are distinct, two keys a and b can be ordered such that exactly one
of a < b and b < a holds. A binary search tree is one where the key of a left
child is smaller than the key of its parent and the key of a right child is greater
than that of its parent.

The two terms “left” child and “right” child are entrenched in computing,
but they lack generality since they assume that the keys can be mapped to a
point on the Euclidean line. As we encounter binary trees for arbitrary geome-
tries in Chapters 28 and 29, and since we would like to be able to use the same
routines under any geometry, we assume instead that a node has a negative
child and a positive child. Considering here the specific and simple example of
the geometry of E 1 (§ 2.5), inserting a node in a binary search tree consists of
making comparisons at a path from the root of the tree to a leaf node. At each
node R with key Rk, the key Nk of the inserted node N is compared with Rk.
If Nk − Rk < 0, the node N is inserted recursively at the negative child, or a Nk −Rk

< 0

R

> 0
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negative child is created if none exists—and likewise for the positive branch if
Nk −Rk > 0.

If a node is implemented using the following three data items,

template<typename T>

class Node
{

T i;
Node ∗negative child;
Node ∗positive child;

then the following code inserts an item of type T:

void insert(const T& item)
{
bool difference is negative = (item < i);
if( difference is negative )

if(negative child)
negative child−>insert(item);
else
negative child = new Node<T>(item);

else
if(positive child)
positive child−>insert(item);
else
positive child = new Node<T>(item);

}

Any class with pointer data members usually requires a nondefault copy con-
structor, an assignment operator, and a destructor. An example of the first for
the Node class is shown below.

Node::Node(const Node<T>& mynode)
{
i = mynode.i;
negative child = mynode.negative child ?

new Node<T>( mynode−>negative child ) : NULL;
positive child = mynode.positive child ?

new Node<T>( mynode−>positive child ) : NULL;
}
An associative container, std::map, is used to return the embedding data—

a point in E 2 is associated with each node in the tree—before an embedding
function is called. The client code follows.

typedef Node<int> Node type;
typedef Point E2<float> Point E2f;
typedef std::map<const Node type∗, Point E2f > My map;

int numbers[] = {5,3,4,6,7};
Node type ∗ N = new Node type(numbers[0]);
int i = 0;
while( ++i!=5 )

N−>insert(numbers[i]);

My map M = embed tree by rank E2<Node type, float >(N);
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24.2 Tree Drawing by Rank

It is reasonable to expect that the nodes of a search tree will be drawn such that
all nodes at the same depth (the number of edges from the root) appear at the
same y-coordinate, with the root of the tree at the largest y value.

If the rank of a node is its index in an in-order traversal of the tree, then one
could use the rank of a node for its x-coordinate. In addition to being simple,
such a rank drawing [60] of trees ensures that the sorted order of the nodes can
be easily seen in the drawing.

The function embed tree by rank E2 takes a pointer to the root of a tree
and returns a map from node pointers to Point E2 objects. The function is
parameterized by two types. The Node type and the type used as parameter to
the point class (itself generic).

template<typename Node type, typename T>

std::map<const Node type∗, Point E2<T> >

embed tree by rank E2( const Node type∗ mytree )
{

std::map<const Node type∗, Point E2<T> > M;
if( mytree )
{
int current rank = 0;
assign rank and depth<Node type, T>(mytree, current rank, 0, M);
}
return M;

}

Simply modifying the implementation of Node to include a Point E2 object
would be a poor design choice since it strongly binds the embedding routine
with one given node class and disallows reuse. Using an associative container
temporarily uses additional storage but decouples the drawing routine from the
tree.

Another parameterized function will assign the rank and the depth to nodes
in the tree. It will also construct a point object and set the association. At each
recursive call, the depth is decremented by a constant. As it is customary
to draw trees with the root at the top, the depth parameter is decremented.
The rank variable, which is passed by reference and so the same variable is
shared throughout the tree traversal, is incremented by one at each node. The
recursive routine is an in-order traversal; at any subtree rooted at a node the
negative (left) subtree is visited first, the subtree root next, and the positive
(right) subtree is visited last. In-order traversal ensures that the node with
the smallest key is assigned an x-coordinate of 0 with the remaining nodes
assigned x-coordinates in their respective rank.

template<typename Node, typename T>

void
assign rank and depth(

const Node∗ mynode,
int& rank, int depth,
std::map<const Node∗, Point E2<T> > & M )
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{
Node ∗ N = mynode−>get negative child();
Node ∗ P = mynode−>get positive child();

if( N ) assign rank and depth( N, rank, depth−2, M );
M[mynode] = Point E2<T>(rank, depth);
rank += 1;
if( P ) assign rank and depth( P, rank, depth−2, M );

}

The only two functions that are invoked on the Node class are

get negative child();
get positive child();

and these constitute the only coupling required between the embedding routine
and the tree. Since the client of the embedding routine should not be required
to inspect the source to see that these two functions are needed, the documen-
tation of embed tree by rank E2 should indicate the necessity of the presence
of these two functions. Notice also that the actual node class must be known
before the compiler can verify that the two functions are indeed present; there
is currently no way in C++ to declare such substitutability requirements ex-
plicitly.

The adjacent figures illustrate two drawings of a complete binary tree. In
one the y values are decremented at each level by twice the decrement in the
other (the unit is the rank used for the x-coordinate). Because the bottom
figure is more appealing, the expression depth−2 appears in the code above.
One could, of course, subsequently apply a transformation, but it is easy to
avoid bothering.

Several desirable features of tree drawing are satisfied by a rank-based al-
gorithm.

1. The tree drawing is layered, that is, nodes at the same depth appear at
the same level (y value) in the drawing.

2. The drawing has no edge crossings.

3. The order property of the tree appears in the drawing: Not only are
nodes to the left (right) of an ancestor in the negative (positive) side of
that ancestor, but nodes also appear strictly in their sorted order from left
to right.

But perhaps this last constraint is too strict. It is relaxed in the following
tidier tree drawing, while additional constraints are introduced.

24.3 Tidier Tree Drawing

A crucial piece of information is duplicated in rank-based tree drawings: The
order of nodes is evident from the drawing and it is redundant to duplicate
that information in the x values. Insisting on matching the order with x values
often results in unnecessarily long edges.
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Tidier drawing replaces the third feature of rank-based drawing with the
following two criteria:

1. Two identical subtrees are drawn in an identical manner regardless of
where they appear in the tree.

2. The drawing is symmetric; if any subtree is replaced by its logical op-
posite, the drawing of that subtree will simply be the reflected image
of the original drawing. This means that nodes with two children are
equidistant from the two children.

These criteria are satisfied by the following tree-drawing algorithm, named
tidier [84] in contrast to the earlier tidy tree drawing [117]. Suppose that the
right contour of the left subtree and the left contour of the right subtree of a
given node have been recursively determined. The two subtrees can be moved
as close as possible to each other while maintaining a minimum separation
between each two nodes that lie at the same depth in the two subtrees.

Once the minimum separation is established, the root of a subtree is placed
halfway in the x direction between the roots of its two subtrees. Because of
this symmetry, a tidier drawing uses only one offset variable that determines
the x separation between a node and either of its two children. The parent of
one or two leaf nodes will have a unit offset.

Should the final coordinates be computed in the same tree traversal that
determines separation? Because the processing of a left subtree is always com-
plete before processing the corresponding right subtree has begun, determining
the coordinates is possible during the separation traversal (given one thread of
computation). But merely touching every node of a right subtree would lead
to a quadratic-time algorithm—as can be verified by counting the steps for a
perfect binary tree (a complete binary tree with 2n − 1 nodes).

For this reason a linear-time implementation requires two traversals, one
post-order (or bottom-up) and the second pre-order (or top-down) [117, 84].
In the first traversal the offset at each node is determined and in the second
the x-coordinates are calculated as the sum of the (signed) offsets of a node’s
ancestors. The root of the tree is assigned x = 0. Nodes in the left subtree may
appear to the right of the root, and vice versa.

There is no need to store explicitly either the contour nodes themselves
or their position relative to a subtree’s root. Since the offsets of a node’s de-
scendants are known when the offset at that node is being determined, the x-
position of a contour node can be determined relative to the root of the subtree.
At each level that is common between the left and the right subtrees, the two
offsets are calculated and the offset at the root increased to accommodate them
if needed. Most of the time, child nodes are also the contour nodes. When
joining two subtrees that differ in height, however, an additional contour link
needs to be determined.

Define the leftmost extreme node of a subtree as the node at the lowest
level in that subtree that appears leftmost in a drawing, and likewise for the
rightmost node—but note that a single node may be both the leftmost and the
rightmost extreme node.
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The leftmost and the rightmost extreme nodes are calculated as a side ef-
fect of the post-order traversal function. At the conclusion of the post-order
traversal, the two extreme nodes of the left subtree (LL and RL) and the two
extreme nodes of the right subtree (LR and RR) will be known. So it is suffi-
cient to return the two required extreme nodes among these four nodes. If one
subtree is taller, its two extreme nodes are those returned. If the two subtrees
have the same height, the leftmost of the left subtree and the rightmost of the
right subtree are returned.LL

LR RR

RL

N

The post-order function has a second side effect; it also determines the
contour links (shown dotted). These are stored in an associative container
Contour that saves contour links for only those nodes that need one. The offset
of such contour links also needs to be saved and the embedding routine may
store it either along with the otherwise unused offset of a leaf node (RR in the
figure) or as an additional data attribute along with contour links. The latter
approach is slightly wasteful but results in a cleaner system.

The readability of the code can be further improved using the following
two helper functions that isolate determining the next nodes on the left and
right contours [22].

next left(v)
if v has a child then

return leftmost child of v
else

return contour link(v)
end if

next right(v)
if v has a child then

return rightmost child of v
else

return contour link(v)
end if

Since contour links are needed only at leaf nodes (which have two NULL
pointers), Reingold and Tilford overload child pointers of a leaf as the left and
right contour links. They add a Boolean flag to signal that the meaning of these
pointers has changed. Doing so saves a little storage but otherwise unnecessar-
ily complicates the implementation. Modifying nodes in the tree is also pre-
cluded if we insist that the tree be passed as a const parameter. Observe also
that updating, however temporarily, the structure of the tree precludes reading
the tree from multiple processing threads.

To see that the algorithm is linear in the number of nodes, consider that
there is a “zipper” shuttering the two subtrees of each node in the tree. Were
this shuttering to proceed to the higher of the two subtrees, the algorithm would
run in quadratic time—as can be seen by considering a degenerate tree consist-
ing of a linked list. But the shuttering proceeds only to the smaller of the two
subtrees. The dominant step of the algorithm is one such zippering unit. Each
node in the tree may participate as the (say) left node in the shuttering, but
then another node would subsequently become the leftmost node on that level,
precluding that a node be used twice.

The algorithm can be generalized to ordered trees with more than two chil-
dren [32], but the modification is not as simple as may seem at first sight be-
cause two subtrees whose roots are not adjacent may need to be separated [22].
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24.4 Tree Drawing

To draw a tree, we first determine the bounding box of its embedding. Since
any order of traversal will do, we use whichever is offered underneath by the
associative container.
template<typename T>

Bbox E2<T>

get Bbox( const My map & M )
{

Bbox E2<T> bbox;
My map::const iterator mi = M.begin();
while( mi != M.end() )
bbox += mi++−>second;
return bbox;

}

We could draw the nodes (as circles) and the edges of the tree in one traver-
sal, but that would require determining the points of intersection of lines and
circles. It is easier to rely on overlaying objects (§A.4) and draw edges first
and nodes second in two traversals. The recursive function shown below for
drawing tree edges fetches the embedding from the associative container M.

template<typename T>

void
draw tree edges(

Postscript<T> & PS,
const Node type ∗ mynode,
My map & M )

{
if(mynode−>get negative child()) {
Node type ∗ N = mynode−>get negative child();
PS.draw( Segment E2<T>( M[mynode], M[N] ) );
draw tree edges( PS, N, M );
}
if(mynode−>get positive child()) {
Node type ∗ P = mynode−>get positive child();
PS.draw( Segment E2<T>( M[mynode], M[P] ) );
draw tree edges( PS, P, M );
}

}
Figure 24.1 shows the rank-based drawing of a tree. The tree is gener-

ated by shuffling the integers 1–100 and inserting the resulting sequence into a
binary search tree.

A tidier drawing of the same tree is shown in Figure 24.2.

24.5 Exercises

24.1 Implement the tidier drawing of binary trees described in § 24.3.




	

��

226 TREE DRAWING

Figure 24.1
A rank drawing of a 100-node tree

Figure 24.2
A tidier drawing of a 100-node tree

24.2 Even though the rank-based drawing of a tree shown in Figure 24.1
is considerably wider than the tidier drawing shown in Figure 24.2, it
has the potentially significant advantage that all nodes are drawn at grid
points—and therefore have integer coordinates. Yet it would appear that
the tidier drawing could be somewhat salvaged: By merely translating
by a constant fraction, a significant subset of the nodes could be made
to have an integer x-coordinate. Modify your implementation of the ti-
dier tree drawing so that some leaf node at the largest depth in the tree
is translated to have an integer x. Deduce experimentally the percent-
age of nodes that would then have integer coordinates when the same
translation is applied on all nodes.

24.3 Considering that the number of nodes at a given level in a tree increases
exponentially, it would appear that a sphere is more suitable than the
Euclidean plane for drawing trees. Develop a system that renders the
root at the “north pole” and its children recursively on the adjacent lines
of latitude. Your system must naturally be interactive since otherwise the
tree would have to be again distorted when projected on the Euclidean
plane.

24.4 Observe that the tidier drawing of a large tree has a skewed aspect ratio;
the figure is too wide compared to its height. The clarity of the draw-
ing decreases because edges near the root of the tree appear almost like
horizontal edges. Devise and implement a heuristic to fix this problem.
Consider here that edges that are nearly vertical are still acceptable.
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Before discussing two methods for graph drawing in § 25.2 and § 25.3, we
spend a moment debating the design of classes for graphs. The two main de-
sign constraints are those of genericity and type safety. Genericity implies that
the set of graph classes we implement would be reusable in other applications
with minimal effort. Type safety guarantees that the compiler has the ability
to confirm that absurd type constructs are flagged as such. By necessity, the
discussion in § 25.1 is only a sketch. The sheer number of natural questions
one can ask about a graph makes the design of a library a topic for a book-
length treatment. Four graph libraries have been designed and implemented
as platforms suitable for building vast systems: the Stanford Graphbase [61],
Sedgewick’s [93], LEDA [67], and the Boost Graph Library [100]. If only a
handful of graph functions will be needed in a system, then developing one’s
own graph toolkit is likely the more suitable approach. But systems that de-
pend on a large number of graph functions should be built by choosing from
these four libraries.

25.1 A Sparse Graph Implementation

To choose a design for a graph and associated classes, we decide first what the
client-side code would look like. In the example, we assume that the nodes
represent cities and that the edges represent flights between the cities.

Three classes for a graph, for a node, and for an edge are needed. Oper-
ations for inserting and deleting nodes and edges will be performed through
a graph object. Thus, nodes and edges do not know the graph to which they
belong, but a graph stores lists of its nodes and edges. The client-side code
may look as follows:

void graph setup()
{

My graph G;
My node ∗n1 = G.insert node( City( ”Cairo”, 15e6 ) );
My node ∗n2 = G.insert node( City( ”Alexandria”, 2e6) );

My edge ∗e1 = G.insert edge( n1, n2, Flight( 225, ’f’ ) );

assert( G.are adjacent(n1, n2) == e1 );
assert( !G.are adjacent(n2, n1) );

}
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To make the implementation reusable, the node, the edge, and the graph
classes are parameterized. The actual types are City and Flight.

struct City
{

std::string city name;
int population;
...

};

struct Flight
{

float distance;
char type;
...

};

These two types are collected in a traits class [71, 112] (see § 18.2) that acts
as a function from the generic types Node type and Edge type to the actual
types City and Flight. The graph class is parameterized by My graph traits to
instantiate an actual class. The actual node and edge classes can be instantiated
either directly (as is done for the graph class) or, as below, by extracting the
two types that are in any case needed in the graph class.

struct My graph traits
{

typedef City Node type;
typedef Flight Edge type;

};

typedef Graph<My graph traits> My graph;
typedef My graph::My node My node;
typedef My graph::My edge My edge;

We assume that the graph is directed; hence, we distinguish between the
source and the target of each edge. Each node object stores one list for the
outgoing edges and another list for the incoming edges. This makes it possible
to iterate over only those edges that have their source at the node or over only
those that have their target at the node. A node also stores an instance of the
template node parameter type, which is typedefed for convenience.

template<typename Graph traits> struct Node
{

typedef typename Graph traits::Node type Parameter node type;
typedef typename Graph traits::Edge type Parameter edge type;

typedef Edge<Graph traits> My edge;

std::list<My edge∗> sourceOf; // node is source of these edges
std::list<My edge∗> targetOf; // node is target of these edges

Parameter node type nt;

Node(const Parameter node type& nt)
: sourceOf(), targetOf(), nt( nt) {}

virtual ˜Node() { }
...

};
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To determine whether two given nodes are adjacent clients would normally
send messages to the graph object. The latter in turn delegates the request to
the first of the two nodes. It is sufficient for that node object to check the list
of edges of which it is source.

template<typename Graph traits> struct Node
{

...
My edge∗
is adjacent(Node ∗n2) const
{

typedef typename std::list<My edge∗>::const iterator Edge iterator;
for( Edge iterator eit=sourceOf.begin(); eit!=sourceOf.end(); ++eit )

if( (∗eit)−>target() == n2 ) // directed graph
return ∗eit;

return NULL;
}

};

Three member variables are needed in an edge object, for the source and
target nodes as well as for the template edge parameter type.

template<typename Graph traits> struct Edge
{

typedef typename Graph traits::Node type Parameter node type;
typedef typename Graph traits::Edge type Parameter edge type;

typedef Node<Graph traits> My node;

My node ∗ source;
My node ∗ target;

Parameter edge type et;

Edge() {}
Edge(My node∗ s, My node∗ t, const Parameter edge type& et)

: source(s), target(t), et(et) {}

virtual ˜Edge() { }

const Parameter edge type info() const { return et; }
Parameter edge type& info() { return et; }

My node ∗ source() const { return source; }
My node ∗ target() const { return target; }

};

Each graph object stores lists of its associated nodes and edges.
template<typename Graph traits> struct Graph
{

typedef typename Graph traits::Node type Parameter node type;
typedef typename Graph traits::Edge type Parameter edge type;
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typedef Node<Graph traits> My node;
typedef Edge<Graph traits> My edge;

std::list<My node∗> nodes;
std::list<My edge∗> edges;

Graph() {}
virtual ˜Graph() { clear(); }
The function for inserting a node expects an (optional) instance of the node

parameter.

typedef Node<Graph traits> My node;
typedef Edge<Graph traits> My edge;

std::list<My node∗> nodes;
std::list<My edge∗> edges;

Graph() {}
virtual ˜Graph() { clear(); }

virtual My node∗ insert node(
const Parameter node type& nt =
Parameter node type())

{
My node∗ mynode = new My node( nt );
nodes.push back(mynode);
return mynode;

}
Likewise, the function for inserting an edge expects the edge parameter as

well as the source and target nodes.
virtual My edge∗ insert edge(

My node∗ source, My node∗ target,
const Parameter edge type& et =
Parameter edge type() )

{
My edge∗ newedge = new My edge(source, target, et);

source−>sourceOf.push back(newedge);
target−>targetOf.push back(newedge);

edges.push back(newedge);
return newedge;

}

25.2 Barycentric Graph Drawing

A classical and versatile method for graph embedding proceeds by iteration
from an initial position. The user selects three or more nodes in the graph
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forming a cycle and maps each node to a point in the Euclidean plane E 2.
The location of the remaining nodes is determined iteratively. The method is
guaranteed to produce a planar drawing for planar graphs [111].

Non-pegged nodes of the graph gradually move to their final position. The
terminating criterion is some threshold below which motion would in any case
be imperceptible. At each iteration, each node is moved to the barycenter of
its neighbors. All nodes are assumed to have unit weight. The barycenter was
discussed in Chapter 13 as the centroid of three masses, but determining the
center of mass can be readily generalized to more than three points. A new set
of coordinates is calculated in a first iteration over the nodes before the new
coordinates are copied in a second iteration while verifying the termination
condition.
bool barycentric iteration(My graph& G, double threshold)
{

const Point E2d ORIGIN(0,0);
std::map<My node∗, Point E2d> M;
typedef std::list<My node∗>::const iterator NIT;
typedef std::list<My edge∗>::const iterator EIT;
for(NIT nit = G.nodes.begin(); nit != G.nodes.end(); ++nit)
{

if( (∗nit)−>info().is free ) {
Vector E2d sum(0,0);
int degree = 0;

std::list<My edge∗> &Ls = (∗nit)−>sourceOf;
for(EIT eit = Ls.begin(); eit != Ls.end(); ++eit, ++degree)

sum = sum + ((∗eit)−>target()−>info().coords − ORIGIN);

std::list<My edge∗> &Lt = (∗nit)−>targetOf;
for(EIT eit = Lt.begin(); eit != Lt.end(); ++eit, ++degree)

sum = sum + ((∗eit)−>source()−>info().coords − ORIGIN);

M[∗nit] = Point E2d(ORIGIN + (sum/double(degree)));
}

}

bool still moving = false;
for(NIT nit = G.nodes.begin(); nit != G.nodes.end(); ++nit)
{

if((∗nit)−>info().is free) {
if( squared distance((∗nit)−>info().coords, M[∗nit]) > threshold )

still moving = true;

(∗nit)−>info().set coords( M[∗nit] );
}

}
return still moving;

}
The iterations shown in Figure 25.1 suggest the two dominant features

of barycentric graph drawing. If the graph is planar, the final drawing is
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guaranteed to be planar (edges meet only at nodes), and the ratio of edge dis-
tances in the final drawing can be arbitrarily large.

Figure 25.1
Steps in barycentric graph drawing

25.3 Force-Directed Graph Drawing

An alternative for embedding a graph in the plane is to assume that each node
carries an electric charge (all nodes are either positive or negative) and that
each edge is a spring. The idea is that the node scattering resulting from the
electric charges will be counteracted by the spring forces to produce an accept-
able drawing. Two nodes attract only if they are joined by an edge, but nodes
exert a repulsive force on all other nodes.

The electric force, according to Coulomb’s law, is proportional to the two
charges and is inversely proportional to the square of the distance. If all nodes
are assumed to have a unit charge, it is only necessary to choose empirically a
constant of proportionality that determines the strength of the repulsion force.
Since the application to graphs is in any case only heuristic, one can experiment
with the proportionality and replace 1/r2 with either 1/r or 1/r3, where r is
the distance separating two given nodes.

The spring force, according to Hook’s law, is proportional to the (signed)
difference between the rest and the actual lengths of the spring. Figure 25.2
shows the initial stages of the resulting graph animation. For this figure springs
have the same length at rest and the electric force follows an inverse square
distance law.

Convergence is slower than in the barycentric method. Figure 25.3 shows
a sequence in the late stages of the drawing.

The exercises pursue a few related possibilities for graph drawing.

25.4 Exercises

25.1 Given the relative merits of the two graph-drawing algorithms discussed,
it is natural to consider the following heuristic. Blend the two start-up
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Figure 25.2
Initial steps in force-directed graph
drawing

Figure 25.3
Late steps in force-directed graph
drawing

programs labeled “barycentric” and “forces” so that the force-directed
method is used for the first half of the free nodes and the barycentric
method takes over for the second half. Report on your observations.

25.2 Solve Exercise 25.1, but add a slider that makes it possible for the user to
choose the fraction of the free nodes after which the barycentric method
takes over.

25.3 Force-directed graph drawing depends on the stiffness of springs and on
the constant used for the electric repulsion. Modify the start-up code
labeled “forces” to provide the user with sliders that make it possible to
manipulate the two constants in some judicious range.

25.4 Consider the following heuristic for a variation on the force-directed
method for drawing graphs. Instead of deciding to stop iterations for
all nodes in the graph, modify the start-up program labeled “forces” and
implement a force-directed program that will stop only those nodes that
have moved in the prior iteration less than a given threshold. As the
number of nodes that become fixed increases, your program will also
increase the stiffness of the springs attached to edges and reduce the rest
length of springs. Write a brief summary of your opinion on the merit
of this approach.




	

��

234 GRAPH DRAWING

25.5 Modify the start-up code labeled “forces” to make it possible for the user
to manipulate the nodes of the graph as the graph is being rendered.

25.6 Modify the start-up code labeled “barycentric” to read a 3D solid (see
Chapter 26), to construct a graph corresponding to the nodes and edges
of the solid, and to draw the graph.

25.7 Apply force-directed rendering to nodes of a binary tree (Chapter 24)
while constraining each node to lie on a line that corresponds to its level
in the tree.
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Part VI

Geometric and Solid Modeling
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What is the most natural way to model solids? The answer depends on whom
one asks. A wood worker or a machinist will suggest that one should start from
elementary building blocks that are added or from which space is subtracted
(or drilled)—the topic of Chapter 30. A tailor will suggest instead that the
boundary of a solid provides an adequate abstraction. Such boundary repre-
sentations, frequently abbreviated as b-reps, are discussed in this chapter. In
the context of this text, the most versatile method is binary partitioning, which
is discussed in Chapters 28 and 29.

26.1 Face Sets

If a solid in question is enveloped by a planar graph, the elements of the
graph—vertices, edges, and faces—are suitable for modeling the solid. Gen-
erating shaded drawings of a solid only requires the ability to rasterize a given
facet, but the notion of an edge need not be represented explicitly. This leads
to the first useful boundary representation for a solid, face sets. It is simplest
if all faces are constrained to be triangles. In that case it is sufficient to store
the coordinates of the vertices for each triangle, but the number of vertices for
each facet remains implicit.

class Tri face set {
vector<Point E3d> P;

public:
...

};

The coordinates defining the first face are 0, 1, and 2. Those defining the
second face are 3, 4, and 5, and so on. We can remove the restriction that the
faces be triangles by storing the number of vertices (or edges) for each face. It
is also convenient to store the (redundant) running total of the number of edges
to avoid computing the total multiple times.

class Face set {
vector<int> num sides;
vector<int> point index;
vector<Point E3d> P;

public:
...

};
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Either of the structures above would need to be completed by ensuring that
at least normal vectors for either faces or vertices and material properties are
stored. But a serious flaw makes the use of face sets an unattractive proposition
in practice. The first few lines of a file that would be loaded into one of the
structures above representing a cube will illustrate the difficulty:

z

y

x

000

100

001 011

010

111

110

101

6
0 4 8 12 16 20
0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0
1.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0
...

One significant drawback in using the face set format is that it is frequently
necessary to know whether two faces are adjacent. It is possible to conclude
from the above data that the two vertices 1.0 0.0 1.0 and 1.0 1.0 1.0 are com-
mon between the top and the front faces, and, hence, that these two faces share
an edge between the two vertices, but doing so requires relying on a geome-
tric comparison to conclude topological, or connectivity, information, which
is exactly what the discussion in Chapter 7 suggested should be avoided. Re-
lying on coordinates for connectivity information is bound to lead to incorrect
conclusions because it in turn relies on comparisons between floating point
numbers.

26.2 Indexed Face Sets

The adjacent figure, which is due to Baer, Eastman, and Henrion [2] and to
Weiler [114], illustrates the nine potential (and not necessarily mutually ex-
clusive) links between the sets of vertices, edges, and faces describing a solid.
We may choose, for instance, for each vertex object to store pointers to the
(ordered list of) adjacent vertices. The notions of an edge and of a face would
be wholly lacking. Or we could choose to represent edges and vertices, and
store links from each edge to its source and target vertices. The face set repre-
sentation does not match the FV representation, for in face sets vertices are not
captured topologically, but only geometrically. The objective from choosing
one representation or another is to provide an easy mechanism for implement-
ing iterators over the elements of the solid. The VE representation would, for
instance, make it possible to iterate over the edges adjacent to each vertex.

V V EV FV

V E EE FE

EF FFV F

The FV representation is sufficient for representing arbitrary solids unam-
biguously. This indexed face set representation stores face-to-vertex adjacen-
cies in addition to vertex coordinates. Thus, an indexed face set representation
makes it possible to test whether two polygons are adjacent without relying on
geometric comparisons.
class Indexed face set1 {
private:

vector<Point E3d> V;
vector<int> vertices;
...

};

The above code illustrates one method for capturing polygons with an ar-
bitrary number of sides. Whereas previously the indices of the starting and
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ending vertices were saved, we now use a special index value, such as −1, to
separate the indices of vertices on different polygons.

The normal vectors to the polygons can be computed from the coordinates
of the vertices defining each polygon, but recomputing the normals from vertex
coordinates is unattractive. On the one hand, it would be wasteful to determine
the normal vectors repeatedly, especially since they are frequently needed. Pre-
cision is another reason. Normal vectors can be determined more accurately
if they are directly generated from the modeling application. In particular, if a
curved surface is modeled, using first-generation normal vectors is preferable
over recomputing them as a second generation from the first-generation vertex
coordinates.

For these reasons most implementations are likely to cache the polygon
normal vectors. This requires introducing the notion of a polygon explicitly
in an IFS data structure. Doing so also makes it possible to store information
such as material properties.

class Polygon {
friend class Indexed face set2;
vector<int> vertex indices;
Direction E3d normal;

public:
...

};

class Indexed face set2 {
private:

vector<Point E3d> V;
vector<Polygon> polygons;
...

};

The Object File Format (OFF) is a popular format for describing solids
using an indexed face set. An OFF file is identified by the appearance of its
acronym on the first line, followed by the number of vertices V , of faces F ,
and of edges E, in that order. The data consist of V lines containing the vertex
coordinates followed by F lines containing the cardinality of each face and the
indices of its vertices. Historically, OFF files also included information about
the edges, hence the presence of their count in the header, but at this time it
appears that no edge data exist in the currently used OFF files. Yet, perhaps to
accommodate potential ancient readers, the header is kept intact.

OFF
4 4 6

1.0 1.0 1.0
−1.0 1.0 −1.0
−1.0 −1.0 1.0
1.0 −1.0 −1.0

3 0 1 2
3 1 0 3
3 0 2 3
3 2 1 3

In the file above four sets of vertex coordinates and four sets of face data
describe the solid. This solid, a regular tetrahedron, is discussed next.
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26.3 Platonic Solids

A polygon whose sides are equal and whose angles are also equal is termed
a regular polygon. A solid whose boundary is composed of identical regular
polygons and whose vertices have identical adjacencies is termed a regular
polyhedron or a Platonic solid [25].

The Regular Tetrahedron

Since the diagonals of the faces of a cube are equal, a regular tetrahedron
can evidently be inscribed in a cube. The four points (1, 1, 1), (1,−1,−1),
(−1, 1,−1), and (−1,−1, 1) can then be used to model a regular tetrahedron.
These coordinates are the simplest to devise, but the most convenient orien-
tation to use a tetrahedron as a solid model is perhaps for one of its faces to
be parallel to one of the coordinate planes. This may be effected by, for in-
stance, applying a rotation about the axis (−1, 0, 1) by an angle equal to the
one between (§ 1.6) the two vectors (0, 1, 0) and (−1, 1,−1).

x

y

z

It is interesting, if only as a diversion, to discuss the set of a tetrahedron’s
axes of symmetry. What are the axes and angles or, alternatively, quaternions
(Chapter 10) about which the present tetrahedron can be rotated such that its
vertices coincide again with the original orientation? It is easy to see that a
rotation of ±2π/3 about the axis from the origin to any of the tetrahedron’s
four vertices is an axis of symmetry. Likewise, a rotation of π about any of the
three major axes will return this tetrahedron to its initial position. Exercise 26.4
pursues this direction further.

The Cube and the Regular Octahedron

We already encountered one canonical cube with coordinates (±1,±1,±1)
(and hence centered at the origin) in § 15.1. The same cube can be used to
devise the coordinates of the regular octahedron. Whereas each face of a cube
is defined by four vertices and each vertex is adjacent to three faces, each face
of a regular octahedron is defined by three vertices and each vertex is adjacent
to four faces. The vertices of a regular octahedron are described by (±1, 0, 0),
(0,±1, 0), and (0, 0,±1).

x

y

z

The Regular Icosahedron and the Regular Dodecahedron

The regular icosahedron has 12 vertices and 20 faces. An elegant way can
be devised for finding the coordinates of its vertices [5]. Consider first that
an icosahedron is created by forking pairs of vertices at each vertex of a reg-
ular octahedron as shown in the figure. The vertices of the icosahedron are
(±1, 0,±t), (±t,±1, 0), and (0,±t,±1).

When t is small, the larger eight triangles are already equilateral by con-
struction. So now we seek a value for t that would make the (darker-shaded)

x

y

z

triangles also equilateral. The length of one side is that between, say, (t, 1, 0)
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and (0, t, 1), or
√

2t2 − 2t+ 2. The length of the other is 2t. Equating, we
find

t2 + t− 1 = 0.

We recall for a moment the golden ratio and ask for the value of t such that
the two rectangles in the figure have the same aspect ratio. This yields

1 + t

1
=

1
t

=⇒ t2 + t− 1 = 0 =⇒ t =
1±

√
5

2
.

The positive value for t, approximately 0.61803, is the coordinate we need.

1

1

t

The connection between the golden ratio and the icosahedron was first made,
according to Coxeter [27], by Luca Pacioli in 1509 as the 12th property of the
“divine proportion.”

The regular octahedron can be constructed by connecting the centroids of
the regular icosahedron, as will be clear in § 26.5.

Only Five Platonic Solids Exist

We can see why only five Platonic solids can exist by considering the Schläfli
symbol, named after the Swiss mathematician Ludwig Schläfli (1814–1895).
Suppose that the symbol {p} identifies a regular p-sided polygon in the plane
and that the symbol {p, q} identifies a Platonic solid having p-sided faces and
q-sided vertices. That is, p vertices (and edges) are adjacent to each face and q
faces (and edges) are adjacent to each vertex [25].

The interior angle at a vertex of {p} is (1 − 2/p)π. To see that that is
the case, consider the turn at each vertex needed by a turtle traversing the
boundary. The sum of all turns must be one full turn, or 2π. Thus, each
exterior angle of {p} is (2/p)π and each interior angle is (1− 2/p)π.

Looking at a vertex of {p, q}, we notice that the sum of the interior an-
gles of all adjacent faces must be less than 2π, for otherwise the solid has no
curvature at that vertex. This sum is q times the interior angles, and so

q(1− 2
p
)π < 2π,

which leads to
2
p

+
2
q
> 1 =⇒ (p− 2)(q − 2) < 4.

The only values for p and q that satisfy this equation are those for the Platonic
solids. Their names are derived from the number of faces (icosa = 12 and
dodeca = 20).

Platonic Solid Schläfli Symbol {p, q} V E F
Regular Tetrahedron {3, 3} 4 6 4
Regular Hexahedron (Cube) {4, 3} 8 12 6
Regular Octahedron {3, 4} 6 12 8
Regular Dodecahedron {5, 3} 20 30 12
Regular Icosahedron {3, 5} 12 30 20
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26.4 Euler Equation

The number of vertices, edges, and faces of a solid are related by Euler’s equa-
tion:

V − E + F = 2.

A simple way to be convinced that this equation holds is to consider incremen-
tally constructing the planar map overlaid on a solid. When starting from noth-
ing, we assume by convention that the three values V , E, and F are initially
0 and that a vertex cannot exist by itself, but that a face must also accompany
it. The first step creates a vertex and a face, leaving the equation invariant.
Inserting an edge and a vertex adds 1 to each of E and V , and closing a face
keeps V invariant but increments E and F by one each.

V

E

F

1

0 1

2
1
1

00
0

2
1

3 3

2
3

The Euler equation applies to one (connected) solid. If n solids are cap-
tured, the number of vertices, edges, and faces is related by V −E +F = 2n.
This form is convenient because it then also holds before any objects are cre-
ated.

26.5 Graphs of Solids

Schlegel Diagrams and Duals of Solids

Consider constructing the surface of a solid from a rubber-like material and
then puncturing one face and stretching the material until the edges of that
face are adjacent to an outer face in a planar map. A Schlegel diagram of the
solid, shown in Figure 26.1 for Platonic solids, is a planar drawing of the solid
in which all edges are traced as straight lines.

Figure 26.1
Schlegel diagram of Pla-

tonic solids—vertex graphs Tetrahedron Cube Octahedron Icosahedron Dodecahedron

If face, rather than vertex, adjacencies are modeled, then the resulting
graphs in Figure 26.2 can be used for coloring the faces such that no two ad-
jacent faces have the same color. The duality of Platonic solids is also now
more evident. The face graph of the octahedron is the vertex graph (Schlegel
diagram) of the cube—and likewise for the dodecahedron and the icosahedron.
The tetrahedron is the dual of itself.

Figure 26.2
The use of the face graphs of

Platonic solids for coloring Tetrahedron CubeOctahedron IcosahedronDodecahedron
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Regular Plane Tilings

How many ways are there to tile the Euclidean plane using a regular polygon?
It is convenient to use once again the Schläfli symbol. The symbol {p, q} will
represent a tiling in which each polygon has p equal sides and each vertex
is adjacent to q polygons. Since a regular polygon with p sides has interior
angle π − 2π/p and since the angle at each vertex is 2π/q, we conclude from
the equality of these two values that pq − 2p − 2q = 0. Since a triangle has
the smallest number of sides, p ≥ 3, and since the interior angle in a regular
polygon is strictly less than π, q ≥ 3. The latter constraint imposes that p ≤ 6.
Since solving for p = 5 leads to a fractional q, the only possible tilings, shown
in Figure 26.3, are {4, 4}, {3, 6}, and {6, 3}.

{4, 4} {3, 6} {6, 3}

Figure 26.3
Regular tilings of the Euclidean
plane

26.6 Exercises

26.1 Implement a (command-line) program that takes a single argument n
and generates an OFF file for a uniform n-sided prism. A prism is a
polyhedron formed by connecting the edges of two regular n-gons ({p};
see § 26.3) by n rectangles. A uniform prism is a prism in which the rec-
tangles become squares [27]. Orient the polygons such that the interior
of the polyhedron lies on the negative side of their carrying plane.

26.2 Show examples of why one cannot define a Platonic solid as one whose
boundary consists of regular polygons and whose vertices have the same
geometry and connectivity.

26.3 Implement a (command-line) program that takes a single argument n and
generates an OFF file for a uniform n-sided antiprism. An antiprism is
a polyhedron formed by connecting the edges of two regular n-gons by
2n isoceles triangles. A uniform antiprism is an antiprism in which the
triangles are equilateral [27]. Ensure that the polygons describing the
boundary are consistently oriented.

26.4 Implement a system that visualizes a tetrahedron’s axes of symmetry by

1. devising the quaternions (how many are there?) corresponding to
the positions of the tetrahedron that match its rest position. Ignore
transformations that include a reflection.

2. rotating the tetrahedron from one position to a random other posi-
tion at a uniform speed, resting, and then repeating.

Distinguish among the four vertices by rendering a different feature at
each vertex.
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26.5 Consider that the planar map in Figure 26.4 is overlaid by a second map
that is inserted incrementally. Write the change in V , E, and F at each
of the first few steps.

Figure 26.4
The overlay of two planar maps

satisfies the Euler equation.

. . .

26.6 Exercise 9.4 discussed one way of partitioning the sphere into regions.
But regular polyhedra suggest that a different method is possible [110].

1. Modify the start-up code labeled “regular spherical model”’ to dis-
play the five possible regular tessellations of the sphere.

2. Implement a method that ensures each edge is drawn only once.

26.7 Use the class GLimageWriter in the code accompanying this text to gen-
erate an animation that illustrates how a regular octahedron can morph
to a regular icosahedron (§ 26.3) when the appropriate proportion (the
golden ratio) is reached.

26.8 Use the class GLimageWriter in the code accompanying this text as well
as your solution to Exercise 26.4 to generate an animation that passes
through all permutations and that returns to the initial position (the ani-
mation would thus appear seamless as an infinite loop). Is it possible to
pass through each permutation exactly once?
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If an application only needs to visualize a solid, then indexed face sets are
adequate; nested iterations over the set of faces and then over the set of ver-
tices defining a face suffice. But IFS representations are not adequate if one
wishes to make incremental modifications to the set of vertices, edges, and
faces defining a solid. This chapter discusses the halfedge data structure and a
set of accompanying algorithms, Euler operators, that make such modifications
possible.

27.1 Introduction

Consider an artist who models an object by starting from a cube and who
wishes to modify the cube such that one of its corners is tapered. The modifi-
cation involves replacing the selected vertex with three vertices and replacing
the vertex in the definition of each of the three polygons with two of the three
vertices. Indexed face sets make it possible to determine the vertices adjacent
to a particular face, but there is no provision to find the faces adjacent to a par-
ticular vertex. A taper operation could still be implemented, but one must then
search in the set of all faces for those that are adjacent to the selected vertex.
Tapering could be performed in time proportional to the number of adjacent
faces if those adjacent faces are stored for each vertex.

struct Vertex {
Point E3d coordinates;
list<Face∗> adjacent faces;

};

As suggested in § 26.2, vertex objects are now explicitly represented and
store point coordinates and face adjacency information. A second example
will suggest that edges also need to be promoted. One could reasonably wish
to apply a tapering operation on edges similar to the one applied on vertices.
As with vertex tapering, an implementation could implicitly represent the edge
being tapered by storing its two adjacent vertices, but to this inconvenience
would be added the inefficiency of searching for the two faces among those
adjacent to the two vertices for the ones adjacent to the edge. In this case
also we could benefit from storing extra connectivity information. Edges are
promoted and each edge is explicitly represented by an object. In addition to
referencing its two adjacent vertices along one (arbitrary) orientation, an edge
would also reference its two adjacent faces. This leads to an edge object such
as the one defined as follows:
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struct Edge {
Vertex ∗source, ∗target;
Face ∗left face, ∗right face;

};

Likewise, we may wish to provide an inset operation on faces. But since
vertex and edge objects now store information about their adjacencies, imple-
menting an inset operation on a quadrangular face would not be just a matter
of replacing one face by five others; performing the updates on adjacent vertex
and edge objects will be necessary, which suggests that storing the information
in a data structure such as the one below may be adequate.

struct Face {
list<Vertex∗> adjacent vertices;
list<Edge∗> adjacent edges;

};

The set of connectivity information in the structures for a vertex, an edge,
and a face above is sufficient for tapering and other “surgical” operations on
the surface of the solid, but it suffers from several serious drawbacks:

1. The total storage requirements for the vertex and face objects (along with
their accompanying lists of pointers) is not constant. In a system that al-
locates and deallocates memory while creating and destroying such ob-
jects over long sessions, significant memory segmentation could occur.

2. Given a vertex and an adjacent face, it is not possible to query in constant
time for the preceding and succeeding vertices and faces around the face
and the vertex, respectively. Since no maximum is imposed on either
the number of vertices defining a face or the number of faces adjacent
to one vertex, the overhead imposed in manipulating objects with high
connectivity could be significant.

3. The orientation of an edge agrees with one of its two adjacent faces but
not the other. By necessity, such an asymmetry percolates throughout the
algorithms and systems built on this design outline. Equally seriously,
the effort required to maintain systems is unnecessarily increased and the
maintenance relies on programmers reading documentation carefully.

27.2 Halfedge Data Structure

The halfedge data structure is a variation on the design sketch above [65].
HEDS solves the three problems:

1. Each object has constant space requirements.

2. Lists of adjacencies can be reconstructed in time proportional to their
size.

3. An edge is split into two twin halfedges, making it possible to refer sim-
ply to either orientation by paying a small price in storage duplication.
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The first description of a data structure with equivalent power, the winged-
edge data structure [7], satisfied the first constraint (significantly, since the
implementation was in FORTRAN) as well as the second.

namespace HEDS {
struct Vertex {

Point E3d coordinates;
Halfedge ∗out neighbor;

};
struct Halfedge {

Vertex ∗source, ∗target;
Face ∗adjacent face;
Halfedge ∗succ, ∗pred;
Halfedge ∗twin;

};

struct Face {
Halfedge ∗adjacent edge;
Direction E3d normal;

};

struct Solid {
vector<Vertex∗> vertices;
vector<Halfedge∗> edges;
vector<Face∗> faces;
...

};
}

outgoing edge

source
target

succ
pred

twin

face
edge F

F
Figure 27.1
The halfedge data structure

The halfedge data structure, illustrated in Figure 27.1, makes it possible to

1. traverse the list of vertices or the edges of a face in time proportional to
their cardinality.

2. traverse the edges outgoing from or incoming to a vertex as well as the
adjacent faces in time proportional to their cardinality.

3. traverse the faces adjacent to a given face in time proportional to their
cardinality.

Vertex and face objects are light: Each stores a single pointer to an adjacent
halfedge. The data structure is, on the other hand, halfedge-centric (hence the
name). Each halfedge stores pointers to the two adjacent vertices and the single
adjacent face as well as pointers to the succeeding and preceding halfedges in
the same face. The crucial twin halfedge pointers link each two halfedges that
are adjacent (in opposite order) to the same pair of vertices.

We can repeat the subset of a figure shown on page 238 that is captured
in a HEDS—the edges reference adjacent vertices, edges, and faces, and each
face and vertex each reference one halfedge.

EV

V E EE FE

EF

Note that this extensive set of connections is sufficient, but not necessary.
A solid consisting of E edges needs 12E pointers, or 96E bytes on a 64-bit
machine, for the edges alone. This can be partially remedied by discarding
either the source or the target of a halfedge as well as either each successor or
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predecessor vertex, but this comes at the price of two indirect memory accesses
each time a discarded pointer is needed.

Linking Twins and Outgoing Halfedges

The extensive set of pointers will normally not be saved to disk, but a format
such as the indexed face set (§ 26.2) will be used. The successor and predeces-
sor pointers for halfedges can be initialized during reading. The face adjacent
to each halfedge and one halfedge adjacent to each face can also be initialized
then. Two sets of pointers remain: the pointer from a halfedge to its twin and
the pointer at each vertex identifying one outgoing halfedge.

Neither operation can be performed while the data are read from disk since
the requisite objects would not have been created (and therefore their addresses
would still be unknown). Once the disk file is read, linking twin pointers can
be performed by iterating over the halfedges and saving in an associative con-
tainer (e.g., std::map) pointers to the halfedge objects indexed by a tuple (e.g.
std::pair) combining the source and target vertex. A second iteration over the
halfedges determines whether the twin key (target, source) has been inserted
and points to the halfedge associated with that key if it exists.

Associating a halfedge pointer with a pair of vertex pointers requires es-
tablishing a total order on the latter. Since no such pair could be equal (no two
halfedges could have the same source and the same target vertices), there is—
or should be—no concern in this case regarding collisions between keys. It
is worth observing that the comparison operator implemented by the Standard
Template Library is subtly different from lexicographic ordering; although in
this case either comparison operator is equally suitable.
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Likewise, setting outgoing halfedge pointers can be performed by two
iterations—the first indexing the halfedges by their source vertex as key (with
duplicates allowed) and the second extracting any of the stored halfedge point-
ers among those indexed by a given vertex. Alternatively, an associative con-
tainer not allowing duplicates may be used. In that case only the first halfedge
with a given vertex is stored. Storage is then proportional to the number of
vertices rather than to the number of halfedges. These initializations are the
topic of Exercises 27.4 and 27.5.

Manifold Topology

The halfedge data structure does not make it possible to handle objects in
which more than two halfedges are adjacent to the same pair of vertices or
in which the neighborhood of a vertex is not equivalent to a disk. To handle
non-manifold topologies another data structure such as the radial edge [115]
or selective geometric complexes [88] needs to be considered instead.

27.3 Euler Operators

The halfedge data structure is attractive partly because it provides these query
abilities, but particularly because it is possible to implement operators that
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locally modify the boundary, or surface, of the solid [7, 34, 66, 86]. Each such
Euler operator can be executed in time proportional to the local complexity.

In some sense HEDS are the generalization to two-dimensional surfaces of
(the one-dimensional) linked lists. From a software engineering perspective,
just as it would be unwise to allow a client programmer who needs an imple-
mentation of a linked list to operate directly on the list pointers, it would also
be unwise to expose the HEDS internal pointers to client programmers. It is in
this spirit that a HEDS implementation should provide a set of functions that
act as an intermediate interface.

An Euler operator is a function that operates on a halfedge data structure
by adding and/or deleting vertices, halfedges, and/or faces so that Euler’s equa-
tion (V −E + F = 2) remains valid on the manipulated solid (or planar map)
after the operation completes, although the equation will, in general, not be
satisfied during the execution of the function.

The following acronyms are used for the operators:

m : make k : kill v : vertex e : edge f : face

The mev operator, for example, stands for make-edge-vertex. It makes, or
creates, a vertex and an edge. Its opposite, kev, the acronym for kill-edge-
vertex, destroys a vertex and an edge. In both cases Euler’s equation is left
invariant.

The following is a partial list of Euler operators:

• mev make-edge-vertex; kev kill-edge-vertex

• mef make-edge-face; kef kill-edge-face

• mvfs make-vertex-face-solid; kvfs kill-vertex-face-solid

• split edge; join edge

The first step in constructing a solid, and the last step in destroying one,
are special. Initially, no objects exist. A vertex is created along with a face,
but with no edges. An example for locally modifying a solid (or a planar map)

kvfs()

mvfs() v1 S

f

using Euler operators is illustrated in Figure 27.2.

kef(e1)

mef(e2,e3)mev(e1)

kev(e4)
v1

v2

e1

e3

e2

v3

e4

v1

v2

e1

e3

e2

v1

v2

e3

e2

Figure 27.2
A subset of Euler operators

The two operations split edge and join edge have the same effect as mev
and kev (adding or removing one vertex and one edge), but the interface is
distinct and hence distinct functions are needed. We will need the first in § 32.2.

These operators are called Euler operators because they keep Euler’s equa-
tion invariant. Note that E is the number of edges and not that of halfedges.
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A tetrahedron, for example, has four vertices, six edges, and four faces; indeed
4− 6 + 4 = 2.

Parameters of Euler Operators

Another advantage of using halfedges is the conciseness of the parameter list
for Euler operators. Passing one halfedge as parameter to a mev operator,
for instance, unambiguously defines where the vertex and the edge should be
inserted. The objects created are then returned from the mev function. Two
halfedges need to be passed to mef, identifying that their two target (or source)
vertices should be joined by an edge.

Using Euler Operators to Construct a Cube

Euler operators act as an intermediate software layer that hides the pointers
from HEDS clients. They would be used to manipulate the surface of a solid—
one already satisfying Euler’s equation, but they can also be used to construct
elementary solids.

Figure 27.3
Using Euler opera-

tors to construct a cube

mev mev mev mef

mvfs

mev

mevmevmevmef

mef

mef mef

In intermediate stages the solid constructed will satisfy Euler’s equation,
but it will not be a sensible solid. Before the last operator in Figure 27.3 is
applied, for example, the solid is valid topologically, although it has one face
between six vertices. Since these vertices are not coplanar, the face thus de-
fined is not planar. Such unrealistic geometries are alright during the construc-
tion of a solid as long as the result is valid also geometrically at the end of the
sequence.

And so the designer may find it useful to use several strata for the HEDS
and its accompanying operators. The first, or bottom-most, layer of functions
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directly manipulates the pointers between the vertices, edges, and faces. A
layer on top implements the Euler operators and maintains the topology, but not
the geometry. This second layer will prevent clients from accessing functions
belonging to the first layer. A third layer will consist of a set of functions that
each maps to a sequence of Euler operators. The construction of a cube above
is an example of one function belonging to that third layer. Other primitive
operations (from the viewpoint of the user of a solid modeling system) will be
those of extrusion, sweep, tapering, etc. and will also belong to the third layer.
This separation is useful conceptually, but it is possible for two layers or all
three layers to be coalesced into member functions of a single class.

27.4 Solids of Arbitrary Genus

A set of vertices, edges, and faces suffices to represent a genus-1 object, such
as a donut, but the standard Euler equation no longer holds. A slightly modified
version

V − E + F = 2(S −H) +R

is needed. This Euler–Poincaré equation also ties the number of holes H and
the number of rings R. S is the number of solids.

A ring is a cycle of edges partially defining a face. Each face is described
by a single outer ring in addition to an arbitrary number of inner rings. The
orientation of halfedges is always such that travelers along a halfedge have the
face to their left. The outer ring will be oriented counterclockwise and the
inner rings clockwise as seen by an observer located outside the solid.

A HEDS implementation incorporating the notion of a ring might be

namespace HEDS2 {
class Vertex {

Point E3d coordinates;
Halfedge ∗out neighbor;

};
class Halfedge {

Vertex ∗source, ∗target;
Face ∗adjacent face;
Halfedge ∗succ, ∗pred;
Halfedge ∗twin;

};
class Ring {

Halfedge ∗adjacent edge;
Ring ∗succ, ∗pred;

};

class Face {
Halfedge ∗outer halfedge;
Ring ∗ first inner ring;
Direction E3d normal;

};

class Solid {
private:

vector<Vertex ∗> vertices;
vector<Halfedge ∗> edges;
vector<Ring ∗> rings;
vector<Face ∗> faces;

public:
mev(...);
...

};
}

Faces with holes could be captured while keeping the notion of a ring im-
plicit. To that effect a pair of halfedges would connect a vertex on the outer
ring to a vertex on each inner ring.
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Two more pairs of operators are needed to manipulate a HEDS with rings
and holes. The complete set of operators becomes

• mev make-edge-vertex; kev kill-edge-vertex

• mef make-edge-face; kef kill-edge-face

• mvfs make-vertex-face-solid; kvfs kill-vertex-face-solid

• split edge; join edge

• kemr kill-edge-make-ring; mekr make-edge-kill-ring

• kfmrh kill-face-make-ring-hole; kfmrh make-face-kill-ring-hole

Using Euler Operators to Construct a Genus-1 Object

Figure 27.4 shows an example illustrating the new set of operators. Assuming
that a solid cube is represented using the HEDS2 set of classes and is built
using the operators previously outlined, the steps in the figure show the incre-
mental construction of a hole in the cube.

Figure 27.4
Complete set of Euler operators

mev

3 × mev mef kemr

4 × mefkfmrh

4 × mev

27.5 Exercises

27.1 Devise the sequence of Euler operators needed to morph a regular octa-
hedron into an icosahedron as discussed in § 26.3. Illustrate the steps for
one of the eight vertices.

27.2 The smallest polygon, a single triangle formed by three vertices, three
halfedges, and one polygon, is not a legal solid since it does not satisfy
Euler’s equation and does not enclose a finite volume. One can define a
zero-volume solid consisting of a triangular area by using two triangles
defined by the same vertices in opposite order. Provide a sequence of
Euler operators that constructs such a solid, dubbed a triangular lamina.
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27.3 Show how the operations of tapering a vertex, tapering an edge, inset-
ting a face, and extruding a face can be reduced to a sequence of Euler
operators.

27.4 Modify the start-up code labeled “select-polygon” to link twin halfedges.

27.5 Modify the start-up code labeled “select-polygon” to set the outgoing
halfedge pointers at each vertex.

27.6 After completing Exercises 27.4 and 27.5, implement a minimal set of
Euler operators (mvfs, mev, kev, mef, kef).

27.7 The user interface of a geometric modeler is one of its most important
components, and the usability of a modeler is often one of its main eval-
uation criteria.

It is common practice to precede development with a storyboard out-
lining the steps the user takes when operating a program [82]. Devise
three different storyboards for a geometric modeler that makes it possi-
ble to taper a vertex, to inset a face, to taper an edge, and to extrude a
face. The three storyboards should represent rather different user inter-
face policies, but each set should be consistent. For instance, will the
user select the data first and then select the function (taper, etc.) that will
be applied, or will the function be selected first?

27.8 Choose one of the storyboards you designed in Exercise 27.7 and then
modify the start-up code labeled “select-polygon” to implement these
modeling operations.

27.9 Ask a friend to participate in testing the usability of your implementation
of Exercise 27.8. After providing minimal assistance, observe how your
friend is interacting with the program and write a few lines suggesting
improvements you could make to your user interface.

27.10 The duality between the cube and the octahedron discussed in Chap-
ter 26 can be taken one step further using Euler operators. Generate a
sequence of images (using the class GLimageWriter in the start-up code)
that show the result of applying vertex tapering simultaneously on the
cube’s eight vertices. When the three vertices generated at each ver-
tex meet at the cube’s edge, the triangles become hexagons, four ver-
tices of which eventually meet to become the octahedron’s vertices. For
many more ideas of possible animations, see Holden’s Shapes, Space,
and Symmetry [53].
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28 BSP Trees in Euclidean and Spherical Geometries

Chapters 26 and 27 discussed how point sets can be represented using their
boundary. This and the next chapter discuss an alternative method for repre-
senting point sets that relies on the recursive partitioning of space. We define
in this case a standard set of operations on the point set (point containment and
Boolean operations). The algorithms can be dissected into combinatorial parts,
discussed in Chapter 29, and geometric parts, discussed in this chapter. This
illustrates how a set of geometric classes can be plugged into a generic combi-
natorial algorithm to produce a concrete algorithm operating on the geometry
in question.

Representing solids as CSG trees (Chapter 30) makes it trivially easy to
perform Boolean operations, but point containment queries are difficult. Rep-
resenting solids using their boundary (Chapters 26 and 27) makes point con-
tainment queries relatively easy, but Boolean operations are involved. Does
a representation exist that makes both operations simple? Binary space parti-
tioning (BSP) trees are such a representation.

28.1 Labeled-Leaf Binary Search Trees

Consider constructing a binary search tree in which the keys in interior nodes
are points in the Euclidean line E 1.

Because the tree satisfies the search property, points in a left subtree are
smaller than (have an x-coordinate that is smaller than) the root of the subtree
and points in a right subtree are greater than the root.

The binary partitioning defined by the tree naturally, but implicitly, defines
a region for each node. The root node a is defined on the region (−∞,+∞),
node b is defined on the region (−∞, 0), and node c is defined on the region
(−3, 0). The resulting structure is termed a binary space partitioning tree, or
BSP tree [38].

−3 0 2 5

−3

0

2
5

a

c

b

a

b

c

We will initially call the two subtrees “left” and “right” subtrees. Doing so
is fine for one-dimensional geometries, but since our objective is ultimately to
write a single implementation for an arbitrary dimension, we will soon move to
naming the two subtrees the “negative” and the “positive” subtrees, paralleling
the convention taken for the comparison predicate in § 2.5.

We now observe that the leaf nodes partition E 1 into regions and that we
can represent a function on E 1 by storing the function in the leaf nodes. To
represent a set of segments in E 1, for instance, we simply store a Boolean flag
at each leaf node. A leaf is labeled true whenever the segment it captures is
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in the set represented and is labeled false otherwise. The resulting structure is
called a labeled-leaf binary search tree [109].

−3 0 2 5

−3

0

2
5 Observe that in a labeled-leaf BSP tree the interior nodes are distinguished

from the leaf nodes. An interior node stores a point in the Euclidean line,
whereas a leaf node stores a Boolean flag.

Even though the segments are represented only implicitly in the tree, we
can find the bounds of the segment defined by a node by inspecting the path
from the root to that node. The deepest interior node with a right child on the
path defines the left endpoint and the deepest interior node with a left child on
the path defines the right endpoint.

28.2 Operations on Segments in E 1

Point Containment

To determine whether a given point in E 1 is in the set captured by a labeled-
leaf BSP tree, we search for the point in the tree. The answer is provided by
the Boolean flag at the leaf. If the point searched is not itself a label for an
interior node in the tree, the search path is a single path from the root to a leaf.
But if the point searched is encountered on the path, recursion forks and both
subtrees are searched.

If both recursive forks return an identical answer (either true or false), that
is the answer sought. But the two recursive forks need not return the same
answer, which suggests that a simple Boolean return flag is insufficient. The
return type is an enumeration of one of three flags:

enum Set membership
{

INSIDE SET = −1,
ON SET BOUNDARY,
OUTSIDE SET

};

The function BSP node::classify, the predicate that determines point contain-
ment, is discussed in § 29.5.

Boolean Operations on Segments in E 1

In contrast to an ordinary binary search tree on E 1, which makes it possible
to insert a point, a labeled-leaf BSP tree makes it possible to insert a segment.
To do so, the segment is split at the root of the tree. The two new fragment
segments are recursively inserted in the two subtrees.

Figure 28.1 shows an example for determining the Boolean union operation
between the segments AB and CD. We start from an empty tree consisting of
a single node labeled false. First AB is inserted, followed by CD. When CD
is inserted at the root node B, CD is split at B, but because both C and D lie
on the positive (right) side of the splitter B, the segment is inserted intact in
the positive (right) subtree of B. When CD reaches the leaf node at the right
child of B, a new subtree is constructed for the segment CD. Indeed, the tree
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for AB itself was constructed in the same vein; a subtree is constructed for
AB and that subtree is appended in the initially empty BSP tree.

A− +

− + − +

− +

− +

− +

A B A B

B

A

B

C

D

DC

Figure 28.1
Incremental construction of the
union of two segments

It is easy to see how intersection and difference operations can be per-
formed; the particular Boolean operation desired is recursively invoked at the
root. A difference operation would flip the Boolean flag from true to false for
each leaf node reached and an intersection operation would flip the Boolean
flag from true to false for each leaf node not reached.

Simple as they are, operations on sets in E 1 exhibit many (but not all) of
the characteristics of the operations in other geometries and higher dimensions.
The two operations we consider next are how a subtree is constructed and how
a segment is split.

Subtree Construction

Evidently, the subtree for a segment AB consists of five nodes—two inte-
rior splitting nodes and three leaf nodes—but which of the two possible trees
should be adopted? We take the convention of using the larger of the splitting
points at the root. Neither is elegant; if a set is reflected before insertion into
a BSP tree, we cannot hope for the two trees to be the mirror image of one
another. But symmetry is missing in any case. Compare, for instance, the tree
resulting from CD ∪AB with the one resulting from AB ∪ CD.

A

B

B

A

A B

− + − +

− +− +

Necessity of Maintaining Neighborhoods

The boundaries of the segments need, of course, not be distinct. Now consider
what would happen if we attempt to construct the tree corresponding to the
expression BC ∪ CD.

Splitting CD at C produces just one fragment and a subtree corresponding
to that fragment is inserted at the positive (right) child of C. But now the tree
has two interior nodes labeled C. The tree also has a leaf node defined on an
empty segment, for the points in it must be simultaneously larger and smaller
than C.

− +

− +

− +

− +

B

B

C

D

DC

C

To avoid this waste of time and space, we define a wrapper object for seg-
ments in E 1. An object of type BSP E1 segment consists of an instance of
Segment E1 (§ 2.5) in addition to two Boolean flags. Recall that Segment E1
in turn stores two points in E 1, a source and a target. The two Boolean flags
capture whether the segment represented is open or closed on either side. Ini-
tially, the inserted segment is closed at both sides. But if a segment such as
CD is split at C, the source flag becomes “open.”

C D

C D
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Splitting a Segment in E 1

The splitting operation takes a segment and a splitter and returns two segments,
one of which may be empty. A sketch of BSP E1 segment follows:

template<typename NT>

class BSP E1 segment
{

bool is empty var;

Segment E1<NT> segment;
bool source is closed, target is closed;
...

};

We stop for a moment and notice how the types are simplified in E 1. Each
segment is determined by two points and the splitter is likewise a point. In
general, the segment is a convex polytope and the splitter is a hyperplane. The
generic (combinatorial) BSP data structures and algorithms discussed in Chap-
ter 29 use these more general terms. An instantiation to a given geometry will
map the generic types to concrete types. In E 2, for instance, the convex poly-
tope is a convex polygon and the hyperplane is a line.

Five cases arise when splitting a segment in E 1. The splitting point may
lie on either side of the segment, may lie inside the segment, or it may coincide
with one of the two boundaries.

Figure 28.2
Splitting a segment in E 1
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We noticed that should the splitter coincide with one of the two boundaries,
that boundary should be flagged as open. If the splitter falls inside a segment,
both segments need to be flagged as open at the splitting point. As illustrated
in Figure 28.2, constructing a subtree to be attached at a leaf will convert a
segment into a subtree while using only the one or two boundaries that remain
flagged as closed. Yet a segment can encounter splitters at both endpoints. In
that case the resulting subtree is a single node.

28.3 Operations on Segments in S 1

Representing a Segment in S 1

A spherical segment AB is represented using a BSP tree rooted at B. The root
node partitions S 1 into B+ and B− (see § 8.2). The latter set is likewise parti-
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tioned by the nodeA intoB−A+ andB−A−. The three leaf nodes correspond
to the three segments in S 1.

An instance of BSP S1 segment represents a segment in S 1 in the context
of BSP trees. In addition to storing the segment represented, two Boolean flags
signal whether the segment is the entire set of points in S 1 or the empty set.

template<typename NT>

class BSP S1 segment
{

bool is empty var;
bool is full var;

Segment S1<NT> segment;
bool source is closed, target is closed;
...

};

AB B

A

− +

− +

B+

B−A+

B−A−

B−A+B−A−

B+

Splitting a Segment in S 1

We look at the four configurations that can arise when splitting a segment by
a point in S 1 as the contrast with E 1 may be illuminating. In cases a and c in
Figure 28.3 the segment is not split, whereas cases b and d require a split. If the
segment is split by either the point (b) or its antipode (d), both fragments are
marked as open at the splitting point. Cases a1 and a3 (which are not mutually
exclusive) do not cause a split, yet the resulting segment is marked as open at
one or both endpoints. Symmetric cases arise when the segment lies on the
closed positive halfspace defined by the splitting point (c).
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Figure 28.3
Splitting a segment in S 1

Handling Degeneracies

Handling degeneracies correctly in S 1 yields unexpected results. Consider
using the three points A(1, 1), B(−1, 1), and C(−1,−1) to construct two seg-
ments AB and BC.

Figure 28.4 shows the evaluation of AB ∪ BC. While BC is percolating
down the tree, it is flagged as open at B and lands in the positive branch of B.
Since only one of the two endpoints is closed (C), only that endpoint induces
a new interior splitting node.

By contrast, Figure 28.5 shows the evaluation of the expression BC ∪AB
(for the same set of points), AB is classified as lying in the negative side of C,
but because A is the antipode of C, the segment AB is flagged as open at A.
When AB subsequently reaches B, it is classified as open at B. Thus, AB
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Figure 28.4
Asymmetry of constructing

a tree in S 1—AB ∪ BC

AB
B

A

B

A C

− +

− +

− +

− + − +

l

m

n l

AB

C

l

m

n

mn

p

p

p

lp nm

AB ∪BC

reaches the negative branch of B with both endpoints open and only has the
effect (on union) of converting the leaf node for the region l from false to true.
Since both children of B now have the label true, one may reduce the tree by
replacing the subtree at B with a single true leaf flag.

Figure 28.5
Asymmetry of constructing

a tree in S 1—BC ∪ AB
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Likewise, if after evaluating AB ∪ CD, we evaluate [AB ∪ CD] ∪ BC,
neither C nor D induces a new partitioning node (they are the antipodes of A
and B, respectively). And so inserting BC only has the effect of modifying
the leaf labels.

A library for one-dimensional spherical geometry could be designed and
used while allowing for segments to exceed half of S 1. This is the reason we
do not assert when constructing a segment that the target lies in the positive
halfspace defined by the source. This constraint becomes required when deal-
ing with BSP trees. An instance of BSP S1 segment can capture all of S 1, or
half or less of S 1, but it cannot capture a segment that is strictly larger than
half and smaller than full. Aside from this constraint, constructing a subtree
in S 1 is nearly identical to the details for E 1, although we do need to confirm
that the two segment endpoints are not antipodal, for then a subtree with only
three nodes is needed.

A

B B− +

28.4 Operations on Convex Polygons in E 2

Point sets with linear boundaries in E 2 can be represented using BSP trees.
Interior nodes store splitting lines and each leaf node stores a Boolean flag.

A Polygon in E 2

It is convenient here to take polygons in the plane as oriented clockwise, rather
than the traditional counterclockwise orientation. There are two reasons for
this choice. A convex polygon in 2D is bounded by a set of oriented halfspaces
(lines) just as a solid in 3D is bounded by a set of oriented planes. Since the 3D
solid is on the negative side of its defining oriented planes, it is more consistent
(and will help a generic implementation) if the inside of a polygon is also on
the negative, or right, side of an oriented line in the plane.E2

+ +

+

E3

+ +

+

+

The second justification for this unorthodox orientation is that we would
like to compute visibility by projecting from either E 2 to S 1 or from E 3 to S 2
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(Part VII). In either scenario the center of projection will lie outside the solids
and in both cases we would like the center of projection to lie on the positive
side of at least one bounding halfspace.
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As would be expected to parallel the two 1D geometries, representing a
convex polygon in E 2 requires saving whether each of its bounding lines is
open or closed. As a polygon is split at interior nodes of a tree, the edges
resulting from a split are flagged as open neighborhoods. The subtree con-
struction routine subsequently only uses those boundaries that remain closed;
each of the boundaries flagged as open would have already been represented at
an ancestor node in the tree.

template<typename NT>

class BSP E2 convex polygon
{

bool is empty var;

std::vector<Segment E2<NT> > lines;
std::vector<bool> line is closed;
...

};

The first few lines of an implementation of a convex polygon show that
segments, rather than lines, in E 2 are used to define the polygon. The reason
this may be necessary is that we may define a line from two points and sub-
sequently find that a test for point-line incidence fails. Such tests are exactly
those that make it possible to discard empty nodes in a BSP tree. Exercise 28.4
asks you to confirm whether floating point on your machine would be reliable
for this purpose.

Splitting a Polygon by a Line in E 2

We need a new splitting algorithm for two reasons. On one side the repre-
sentation of the polygon is dual to the traditional one; it is based on bounding
lines rather than the polygon vertices. More importantly, the algorithm needs
to return two polygon fragments that correctly include the neighborhood in-
formation. This information is linked with line boundaries, which must be
interleaved while the point-based sidedness tests are performed.

Describing a splitting algorithm that operates on edges rather than on ver-
tices will seem to be a step backward—at least if one adopts the now-established
thinking that operating on vertices is simpler (because that makes it more
amenable to a hardware implementation [107]). But simplicity is not necessar-
ily desirable, rather the simplest simplicity that adequately explains problems
and that provides a general solution is what we ought to be seeking. Vector
visibility (Part VII) will also seem to be a step backward compared to raster
methods. Ultimately, it all depends on the specification of the problem studied.

The traditional approach for representing a polygon is to use neither pairs
of points (or segments, as just discussed) nor lines. But the obvious approach
of representing a polygon using vertices is flawed. As mentioned in § 6.4,
failure to keep the algebraic degree of all expressions in a geometric system
at a minimum is a recipe for introducing difficulties. If floating point numbers
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are used, the predicates will be increasingly unreliable. If rational numbers are
used, the size of the numbers quickly dominates the storage. Floating point
filters help a little, but filtering will only delay, not eliminate, the problem,
which is simply encountered with larger inputs.

As shown in the adjacent figure, a polygon is defined using its bounding
lines. Each line is in turn defined using two input points. Splitting a polygon
by a line consists of inserting the splitting line twice in the circular list defining
the polygon to determine the two fragments.

+

−

The algorithm shown in Figure 28.6 splits a polygon whose boundary is
defined by pairs of points. Since we have in any case to compute the vertices of
the polygon to determine their orientation with respect to the splitting line, this
is the first step in the code. If all vertices lie on one side of the splitting line,
we determine whether any of the bounding lines coincides with the splitting
line to construct the Boolean flags correctly then return.

The algorithm then has to handle the 10 cases shown. Consider, for in-
stance, case (f) in the figure. The target of an edge is found to lie on the
splitting line. This indicates that the next edge to be inserted in the positive
fragment will be colinear with the splitting line and will need to be flagged
accordingly. Cases (f) and (h) are not mutually exclusive. Cases (i) and (j)
are the classical polygon-clipping steps discussed in § 5.4. C++ code for this
function is included in the code accompanying the text. If the interior of the
polygon lies to the left (positive) side rather than the right side of the bound-
ary, the same pseudo-code applies. One only has to swap the two lines labeled
“insert L” and “insert -L.”

After a polygon has been split by partitioning lines on paths from the root
to leaves, a tree is constructed for each resulting fragment at a leaf. The new
subtree for those fragments whose boundaries resulted exclusively from splits
is simple; it consists of a single node. An example illustrates the need for the
split function above. Consider constructing the union of two triangles ABC
andDEF such thatA,C,D, andE are colinear. WhenDEF is inserted in the
tree, it is split by AB, but only one fragment, whose three sides are labeled as
closed, results. The same occurs when DEF is split at BC. Splitting at CA,
on the other hand, signals that the edge DE already occurs in the tree and that
DE is thus open. For this reason, the tree constructed for the triangle DEF
omits the partition line at DE; it would duplicate CA and result in an empty
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set at a leaf. The code for subtree construction in E 2 is described in § 29.4, and
the case when D = A and E = C is discussed further in Exercise 28.4.

28.5 Exercises

28.1 Show the labeled-leaf BSP tree that would result from the following
operations in E 1:

• [1, 5] ∪ [2, 7]
• [1, 5] ∩ [2, 7]
• [1, 5]− [2, 7]

• [1, 5]− [2, 4]

• {[−3, 0] ∪ [2, 5]} ∪ [0, 2]

• {[−3, 0] ∪ [2, 5]} ∩ [−3, 5]
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Split(Polygon P, Line L)
returns positive polygon, negative polygon: Polygon
determine vertices of P
classify vertices of P with respect to L
if no vertex lies in L−

or no vertex lies in L+

for each bounding line of P // Case (a)
if line coincides with L

set the corresponding edge flag
if no vertex lies in L− // Case (b)

copy P with new edge flags into positive polygon
if no vertex lies in L+ // Case (c)

copy P with new edge flags into negative polygon
return

if all vertices of P lie on L // Case (d)
return

vector of lines positive lines, negative lines
vector of flags flags of positive lines, flags of negative lines
for each bounding edge e of P

if e.source is not in L− and e.target is not in L−

insert e to positive lines // Case (e)
insert flag of e to flags of positive lines
if e.target lies on L // Case (f)

insert L to positive lines
insert true to flags of positive lines

else if e.source is not in L+ and e.target is not in L+

insert e to negative lines // Case (g)
insert flag of e to flags of negative lines
if e.target lies on L

insert -L to negative lines // Case (h)
insert true to flags of negative lines

else // segment straddles the splitting line; split
find intersection point I
if e.source lies in L+ and e.target lies in L−

insert e to positive lines // Case (i)
insert flag of e to flags of positive lines
insert L to positive lines
insert true to flags of positive lines
insert e to negative lines
insert flag of e to flags of negative lines

// The symmetric next case is included for completeness
if e.source lies in L− and e.target lies in L+

insert e to negative lines // Case (j)
insert flag of e.source to flags of negative lines
insert -L to negative lines
insert true to flags of negative lines
insert e to positive lines
insert flag of e to flags of positive lines

construct positive polygon from positive lines and flags of positive lines
construct negative polygon from negative lines and flags of negative lines

(a)

(b)

(c)

(d)

(e)
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Figure 28.6
Robust polygon splitting

28.2 Implement a system that takes a set of nonoverlapping segments in E 1

and constructs a balanced labeled-leaf BSP tree directly from the seg-
ments (without incrementally inserting the segments). Write test rou-
tines to confirm that your code is correct.

28.3 The ability to insert a set of segments incrementally into an initially
empty tree obviates the need to write the initialization function discussed
in Exercise 28.2, yet such a function may still be useful. Predict which
approach is faster and confirm using timing tests whether your prediction
was accurate. Does the difference make the specialized initialization
code worthwhile?

28.4 In § 28.4 pairs of points, rather than lines, were used to define the bound-
ary of a polygon. Determine whether doing so has any benefit on your
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machine. To do so, read § 7.3 and then write a program that generates
pairs of noncoincident points (in a square) and then constructs a line ob-
ject from the pair of points. If you then check whether both points are
indeed incident to the line they have defined, does your machine some-
time conclude that that is not the case? If it does, what is the ratio of
success to error?
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29 Geometry-Free Geometric Computing

Coordinate-free geometric computing was introduced in Part III. Chapter 17
discussed why we may wish to develop a geometric algorithm for one geome-
try without manipulating coordinates directly, and Chapter 18 discussed how
CGAL [36, 23] achieves coordinate freedom.

This chapter illustrates that we go further than coordinate-freedom and
achieve geometry-freedom; a geometric algorithm may be designed and de-
veloped such that it remains geometry-neutral and thus purely combinatorial.
The geometric parts are isolated from the combinatorial parts, and a geometry
is used as a plug-in into the combinatorial algorithm to produce a geometric
algorithm.

As templates in C++ can be used for data genericity as well as for algo-
rithm genericity [1, 100], a set of classes and predicate functions can be bound
to one of several sets of classes and functions. Such multiple instantiations
of a single algorithm are shown to be useful in Part VII, where a single prob-
lem requires representing and manipulating point sets in different geometries.
Another advantage is that the reliability of the resulting code is increased. If
the code is written such that it amalgamates its infrastructure in more than one
way, the potential locations for a programming error are diminished.

We have already encountered geometry-free, or geometry-neutral, algo-
rithms in Parts I and II. Clipping and splitting operations were described such
that the coupling between the operation proper and the underlying geometry
is reduced. As a prominent example, polygon clipping should be described in
isolation from the Euclidean or the oriented projective geometry in which its
final implementation would reside. Ideally, the implementation itself would be
generic.

29.1 A Generic BSP Node

As in Chapter 24, we use a single class to capture a binary search tree. The
class BSP node is parameterized by BSP geometry as well as by boundary and
interior type attributes (discussed in § 29.2). Each geometry provides its own
actual types.
template<

typename BSP geometry,
typename Boundary attributes,
typename Interior attributes>

class BSP node
{

typedef typename BSP geometry::Hyperplane Hyperplane;
typedef typename BSP geometry::Point Point;
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typedef typename BSP geometry::BSP convex polytope BSP convex polytope;

typedef typename BSP geometry::Sub hyperplane Sub hyperplane;

typedef BSP node<BSP geometry, Boundary attributes, Interior attributes> My BSP node;...// hyperplane and boundary attributes are valid for interior nodes only.
Hyperplane hyperplane;
Boundary attributes boundary attributes;

// cell is occupied and interior attributes are valid for leaf nodes only.
bool cell is occupied;
Interior attributes interior attributes;

BSP node ∗ positive child;
BSP node ∗ negative child;...

};

For a generic (combinatorial) class to be used, it must be instantiated for a
given geometry. Its algorithms (member functions) operate without knowledge
of the particular geometry under which they apply. Whenever a combinatorial
operation needs geometric data, the geometric subset is delegated to a given
geometric component, itself relying on classes for a corresponding geometry.

To use BSP node for E 2, for instance, it must be instantiated for a class
BSP E2 that acts as a traits class [71, 112] (see § 18.2) as well as an interface
to the basic classes of E 2.
template<

typename NT,
typename Boundary attributes,
typename Interior attributes>

class BSP E2
{
public:

typedef Segment E2<NT> Hyperplane;
typedef Point E2<NT> Point;
typedef BSP E2 convex polygon<NT> BSP convex polytope;
typedef BSP E2 segment<NT> Sub hyperplane;

typedef BSP E2<NT, Boundary attributes, Interior attributes> BSP geometry;
typedef BSP node<BSP geometry, Boundary attributes, Interior attributes> BSP node E2;...

};

The adjacent figure illustrates using a conceptual UML diagram how a geo-
metry is used as a plug-in to a combinatorial algorithm to yield one geometric
algorithm or another depending on the plug-in.

G: Geometry
CA: Combinatorial Algorithm

E1 CA S1 CA E2 CA S2 CA
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d�
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Each geometry will have its own set of traits. The basic elements are a
point and a hyperplane, as well as a function for determining the side of the
hyperplane on which the point lies. Leaf nodes represent full-dimensional sub-
sets in the corresponding geometry. Subhyperplanes are discussed in § 29.7.

29.2 Attributes

We often wish in practice to associate some attributes with a point set. In
rendering applications we may want to save color and other surface material
properties of the point set. In engineering we may want to save the density,
strength coefficients, or other properties of the material. The former are exam-
ples of boundary attributes while the latter are examples of interior attributes.
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Geometry Hyper- Point BSP convex Sub-
plane polytope hyperplane

E 1 Point Point (in E 1) Segment Point
E 2 Line Point (in E 2) Convex polygon Segment †
E 3 Plane Point (in E 3) Convex polyhedron Polygon †
S 1 Point Point (in S 1) Segment Point
S 2 Circle Point (in S 2) Convex polygon Segment
†: The segment or the polygon may be unbounded.

Interior Attributes

Whether an attribute is a boundary or an interior attribute is a relative notion.
As we will see in Chapters 31 and 32, for instance, the boundary attribute of a
set will become the interior attribute when the same set is projected (from E 2

to S 1 or from E 3 to S 2). Whenever a concrete class is instantiated from the
generic class, the two attribute types then also need to be specified.

Interior attributes are only stored for leaf nodes labeled true. Since leaf
nodes labeled false are not in the set, no attribute is maintained for them. In
the accompanying code an object, rather than a pointer to an object, is stored,
and so a default attribute is used for leaves labeled false. Storing the object it-
self simplifies programming since the client programmer need not worry about
memory deallocation. The drawback is that common attributes that occupy
significant storage are duplicated, but then the client programmer can define
wrappers to share attributes via pointers when needed.

Boundary Attributes

The boundary attributes of a set are stored at interior nodes. As we will see in
§ 29.7, the boundary is collected from the tree by constructing the subhyper-
planes. Because we use in this treatment a single-level binary tree to represent
a point set, storing the boundary attributes is inherently limited: Only one at-
tribute is stored at a hyperplane. If the hyperplane is used to construct more
than one subhyperplane, all subhyperplanes must share the same attribute.

It is possible to remove this restriction while also adding the ability to
represent nonregular point sets (see § 30.5) by using multi-level binary space
partitioning. Each interior node for a tree representing a point set in E 2, for
instance, would store a tree capturing a point set in E 1 [4, 76]. Thus, an
n-dimensional point set would be represented using an n-level binary tree.
We only point out to this possibility here, but do not pursue it further. The
current framework would also make it possible to be generic in the geometry:
an interior node in a binary tree for a geometry Gn would store a binary tree
for a point set in the geometry Gn−1, where G can be either of the separable
spaces En or Sn.
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Attribute Stability

A Boolean operation is termed stable if the attributes of a set before the oper-
ation are not altered after the operation is performed. Consider, for example,
calculating the difference AC − BD = AB in E 1 for four distinct values A,
B, C, and D that are in increasing order. For the operation to be stable, the
interior attribute of AB must be that of AC before the operation is performed
and the boundary attribute atAmust remain unchanged while that for the result
AB at B must be that for BD.

29.3 Boolean Operations and Attribute Maintenance

We focus here on computing Boolean operations between a BSP tree and a
convex polytope [109], but it is also possible to compute Boolean operations
between two BSP trees [72]. In both cases the result of the operation is a BSP
tree, which indicates that the interior and the boundary attributes must be saved
in the tree; once the operation is completed, no reference to the polytopes that
originated the BSP tree is saved. Since the implementation of each Boolean
function is only a few lines long, we avoid the obfuscation resulting from com-
bining all functions into one as well as paying at run time the price of testing
which operation is performed. As a running example, we consider applying
the three functions on the two triangles ABC and DEF shown in the adjacent
figure.
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Union

If the convex polytope is at an interior node, it is split into a positive and
a negative part. This splitting function is one of the geometric parts of the
algorithm and must be delegated to the corresponding geometric component.
One or both polytopes after splitting are recursively inserted in the BSP tree.
If a polytope reaches a leaf node that is already in the set, the polytope is
discarded. If the polytope, on the other hand, reaches an empty leaf node, a
subtree is built with the attributes of the inserted polytope and the subtree is
appended at the leaf node. Building a subtree is also delegated to a geometric
component.
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void boolean union(
const BSP convex polytope& polytope,
const Boundary attributes& b attr,
const Interior attributes& i attr )

{
if( !is leaf() ) {

BSP convex polytope positive part, negative part;
BSP geometry::split( polytope, hyperplane, positive part, negative part );
if( !positive part.is empty() )

positive child−>boolean union( positive part, b attr, i attr );
if( !negative part.is empty() )

negative child−>boolean union( negative part, b attr, i attr );
}
else

if( cell is occupied )
; // do nothing

else
BSP geometry::build subtree( this, polytope, b attr, i attr );

}
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Intersection

If during an intersection operation a positive part is empty after splitting, the
subtree rooted at the positive child is recursively deleted. If it is not empty, it
is treated recursively—and likewise for the negative part.

In the base case of the intersection function a subtree is built only at leaf
nodes that are already occupied. In that case the boundary attributes of the
convex polytope are used, but to maintain interior attribute stability the interior
attribute of the leaf node of the BSP tree is used instead.
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void boolean intersection(
const BSP convex polytope& polytope,
const Boundary attributes& b attr )

{
if( !is leaf() ) {

BSP convex polytope positive part, negative part;
BSP geometry::split( polytope, hyperplane, positive part, negative part );
if( positive part.is empty() ) {

delete positive child;
positive child = new BSP node(false);

}
else

positive child−>boolean intersection( positive part, b attr );
if( negative part.is empty() ) {

delete negative child;
negative child = new BSP node(false);

}
else

negative child−>boolean intersection( negative part, b attr );
}
else

if( cell is occupied )
BSP geometry::build subtree( this, polytope, b attr, interior attributes );

else
; // do nothing

}

Difference

The recursive part of computing the Boolean difference operation is, as with
union, a standard example of divide-and-conquer. When a polytope fragment
reaches a leaf node that is occupied (already in the set captured), a subtree is
constructed at that leaf node. But in this case the subtree construction routine
is asked to reverse space: Those leaves that would have been labeled false
are labeled true and the one leaf that would have been labeled true is labeled
false.
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void boolean difference(
const BSP convex polytope& polytope,
const Boundary attributes& b attr )

{
if( !is leaf() ) {

BSP convex polytope positive part, negative part;
BSP geometry::split( polytope, hyperplane, positive part, negative part );
if( !positive part.is empty() )

positive child−>boolean difference( positive part, b attr );
if( !negative part.is empty() )

negative child−>boolean difference( negative part, b attr );
}
else

if( cell is occupied )
BSP geometry::build subtree( this, polytope, b attr,

interior attributes, true /∗reverse space∗/ );
else

; // do nothing (implicitly discard polytope)
}
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29.4 Subtree Construction in E 2

To construct the subtree, we extract from the convex polygon the free bounding
lines—those where the polygon remains closed. In this code only the boundary
and interior attributes of the convex polygon are involved, unlike the Boolean
operations discussed above, where the attributes of the current node as well as
the polytope are involved.

static void
build subtree(

BSP node E2 ∗ current node,
const BSP E2 convex polygon<NT>& P,
const Boundary attributes& boundary attributes,
const Interior attributes& interior attributes,
bool reverseSpace = false )

{
std::vector<Segment E2<NT> > bounding lines = P.get free bounding lines();

if( bounding lines.size() > 0 ) {
typedef typename std::vector<Segment E2<NT> >::iterator ExtSegIt;
ExtSegIt lineIt = bounding lines.begin();
current node−>set interior node( ∗lineIt, boundary attributes );
BSP node E2∗ current = current node;
if( bounding lines.size() == 1 ) {

current−>positive child = new BSP node E2( reverseSpace );
if( reverseSpace )

current−>positive child−>interior attributes = interior attributes;
current−>negative child = new BSP node E2( !reverseSpace );
if( !reverseSpace )

current−>negative child−>interior attributes = interior attributes;
}
else {

do {
++lineIt;
current−>positive child = new BSP node E2( reverseSpace );
if( reverseSpace )

current−>positive child−>interior attributes = interior attributes;
current−>negative child = new BSP node E2(false);
if(lineIt != bounding lines.end())

current−>negative child−>set interior node( ∗lineIt, boundary attributes );
else

current−>negative child−>set leaf node( !reverseSpace, interior attributes );
current = current−>negative child;

} while( lineIt != bounding lines.end() );
}

}
}

29.5 Point Containment

Determining whether a point is in the point set consists of recursively search-
ing for the point in the binary tree. As long as the point is not incident to a
hyperplane stored at an interior node on the search path, the answer will be
readily found at the leaf.

If the point is incident to a hyperplane during the search, both subtrees are
searched. The positive subtree search determines the positive neighborhood
of the point and the negative subtree search determines the negative neighbor-
hood. If both report that the respective neighborhood is in the set and both
have the same interior attribute, the point is in the set interior and the attribute
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is known. If the interior attributes differ, we signal that the neighborhood is het-
erogeneous by returning the default interior attribute. If the set memberships
differ, the point is known to lie on the boundary. We repeat for convenience a
figure that we saw on page 256.

typedef std::pair<
Set membership,
Interior attributes > Classification pair;

Classification pair
classify( const Point& P ) const
{

if( is leaf() )
return std::make pair(

cell is occupied ? INSIDE SET : OUTSIDE SET,
interior attributes);

else {
const Oriented side os = oriented side( hyperplane, P );
if( os == ON POSITIVE SIDE )

return positive child−>classify( P );
else if( os == ON NEGATIVE SIDE )

return negative child−>classify( P );
else {

const Classification pair pos = positive child−>classify( P );
const Classification pair neg = negative child−>classify( P );
if( pos == neg )

return pos;
else if( pos.first == neg.first )

return std::make pair( pos.first, Interior attributes() );
else

return std::make pair( ON SET BOUNDARY, Interior attributes() );
}

}
}

29.6 Collecting the Convex Polytopes

We can collect the point set from the tree by recursively partitioning a certain
domain at the root of the tree. The elegance of spherical geometries is revealed
when we consider that the universe of S 1 or S 2 can be sent to the function
recovering the convex polytopes. Even though a segment in S 1 or a polygon
in S 2 is not allowed to be the universal set, it is possible to add a flag to signal
the universal set, which is then treated as a special case in the splitting routine.

The difficulty with Euclidean spaces can be solved by defining an infimax-
imal frame [68] that acts as an initially unbounded bounding box. Recursive
divisions will be defined as a function of extended points, which have the ad-
vantage over Euclidean points of simulating ideal points by having at least
one coordinate on a large but undetermined value. An implementation based
on CGAL, which includes an extended kernel, established that infimaximal
frames can indeed be used to avoid passing an initial polytope to the root of
the tree, but we will be content here with discussing a standalone implementa-
tion that expects such an initial polytope.

typedef std::pair<BSP convex polytope,Interior attributes> PolyAttr;
typedef std::vector<PolyAttr> Interior list;

void
get polytopes(
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const BSP convex polytope & polytope,
Interior list & collector ) const

{
if( is leaf() ) {

if( cell is occupied )
collector.push back(

std::make pair( polytope, interior attributes) );
}
else {

BSP convex polytope positive side;
BSP convex polytope negative side;
BSP geometry::split(

polytope, hyperplane,
positive side, negative side );

if( negative child && !negative side.is empty() )
negative child−>get polytopes(

negative side,
collector);

if( positive child && !positive side.is empty() )
positive child−>get polytopes(

positive side,
collector);

}
}
The tree is traversed to collect either the interior or the boundary of the set.

Collecting the interior occurs at leaf nodes, whereas collecting the boundary,
which is discussed next, occurs at interior nodes.

29.7 Collecting the Boundary

To collect the boundary of the point set in the tree we pass a bounding box
(for Euclidean geometries) or the universal set (for spherical geometries) to
the root of the tree. Recursive splitting yields convex regions at each interior
node; the convex polytope at a given node is the intersection of the halfspaces
of the ancestors of the node. At any interior node, the intersection of the node’s
convex region with the node’s hyperplane is termed a subhyperplane. Subhy-
perplanes are generic types that map to different concrete types for the different
geometries (§ 29.1).

But the linear separation provided by splitting hyperplanes makes it pos-
sible to recover the boundary in a special order. If we pass a point to the
boundary collection routine, it is possible to determine at each interior node
the side on which the point lies. We can then return the boundary of the “far”
set (the set opposite the query point) or the boundary of the “near” set (the set
lying in the same halfspace as the query point) before the other.

To generate the order from near to far, the halfspace in which the observer
lies is traversed first. The near-to-far, or front-to-back, order is particularly
appealing as it can be used to construct the view using Boolean operations in
a spherical geometry, the topic of Part VII.
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void boundary(
Boundary list & ftb,
const BSP convex polytope & current cell,
const Point & observer,
bool also get backfaces )

{
if( is leaf() )

return;

const Oriented side s = oriented side(hyperplane, observer);

BSP convex polytope p polytope, n polytope;
BSP geometry::split( current cell, hyperplane, p polytope, n polytope );

if( s == ON POSITIVE SIDE ) {
if( positive child )

positive child−>boundary(ftb, p polytope, observer, also get backfaces);
Sub hyperplane sub hyperplane;
BSP geometry::construct sub hyperplane(hyperplane, p polytope, sub hyperplane);
ftb.push back( std::make pair(sub hyperplane, boundary attributes) );
if( negative child )

negative child−>boundary(ftb, n polytope, observer, also get backfaces);
}
else if( s == ON NEGATIVE SIDE ) {

if( negative child )
negative child−>boundary(ftb, n polytope, observer, also get backfaces);

if( also get backfaces ) {
Sub hyperplane sub hyperplane;
BSP geometry::construct sub hyperplane(hyperplane, n polytope, sub hyperplane);
ftb.push back( std::make pair(sub hyperplane, boundary attributes) );

}
if( positive child )

positive child−>boundary(ftb, p polytope, observer, also get backfaces);
}
else { // ON ORIENTED BOUNDARY

// either order will do
if( negative child )

negative child−>boundary(ftb, n polytope, observer, also get backfaces);
if( positive child )

positive child−>boundary(ftb, p polytope, observer, also get backfaces);
}

}

The section concludes by discussing how subhyperplanes can be explicitly
determined in E 2.

Splitting a Subhyperplane to a Convex Region in E 2

A subhyperplane is a continuous subset of a line in the plane. It may be either
a line, a ray, or a segment: The term captures any of the three occurrences.
Subhyperplanes are normally represented only implicitly in a BSP tree—in that
neither the source nor the target of the segment (with one or both potentially at
infinity) is known. Yet determining the two endpoints is occasionally needed.
One example is the classical way of drawing a BSP tree in the plane. For the
diagram to be intelligible, only those portions of splitting lines that intersect
their respective cells are drawn. source

target

The subhyperplane associated with the root node of a tree is always a line,
which can also be seen as a segment with two points at infinity. As before, a
bounding box that is passed to the root of the tree is recursively split at interior
nodes.

But determining the two endpoints of a subhyperplane (drawn segment)
cannot be performed by simply clipping an initial (conceptually infinite)
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segment by the halfspaces (lines) defining the convex region. Doing so would
not put an upper bound on the algebraic degree (§ 6.4) of the two endpoints. In
the figure, for example, two unnecessary clip operations could potentially be
performed raising the algebraic degree of the resulting points. The subhyper-
plane remains instead implicitly defined by a carrying line and a bounding
cell. The two actual endpoints are determined only if the client code explicitly
requests the source or the target of the subhyperplane.

A

B

The loop in the following code only determines the two bounding lines
that will define the two endpoints, but no clipping is actually performed. Once
the two bounding lines are known, two intersection operations will determine
the endpoints. The signed distance along the carrying line of the intersection
points is maintained. But this step also must be performed with care. Comput-
ing the actual distance would not do since it requires a square-root computa-
tion. It is also unnecessary to calculate the square of the distance; the projected
distance suffices. Choosing between the two axes of projection is made based
on the dominant direction (§ 2.4) of the carrying line.
template<typename NT>
std::pair<bool,Segment E2<NT> >

clip line to convex region(
const Segment E2<NT>& carrying line,
const std::vector<Segment E2<NT> >& region)

{
const NT zero(0);
NT min largest = + std::numeric limits<NT>::max();
NT max smallest = − std::numeric limits<NT>::max();

Segment E2<NT> s min largest, s max smallest;
typedef typename std::vector<Segment E2<NT> >::const iterator Sci;
for( Sci s = region.begin(); s != region.end(); ++s )

if( !are parallel(∗s, carrying line) )
{

bool plus = ( cross product(carrying line.get Vector E2(),
s−>get Vector E2()) > zero );

NT lpd = find larger projected difference(carrying line, ∗s);
if( plus ) {

if( lpd < min largest )
{ min largest = lpd; s min largest = ∗s; }

} else
if( lpd > max smallest )
{ max smallest = lpd; s max smallest = ∗s; }

}
else // simulate T2

if( oriented side(∗s, carrying line.source()) == ON NEGATIVE SIDE )
return std::make pair(false, Segment E2<NT>()); // clipped out

if( min largest <= max smallest )
return std::make pair(false, Segment E2<NT>()); // clipped out

Point E2<NT> s = intersection of lines(carrying line, s max smallest);
Point E2<NT> t = intersection of lines(carrying line, s min largest);
return std::make pair(true, Segment E2<NT>(s,t));

}

Notice that we cannot simply ignore bounding lines that are parallel to
the carrying line. The two endpoints marked by squares would otherwise be
reported as the endpoints of the segment when the segment is in fact clipped
out by the convex region.

A

B

We conclude this section by showing an example for computing Boolean
operations on a set of triangles in E 2. The triangles are formed from three
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vertices chosen randomly inside a square, and each Boolean operation is also
chosen randomly between union and difference. Figure 29.1 shows the tree
resulting from 25 such triangles, as well as the point set resulting from com-
puting Boolean operations on 25 and from 250 triangles. For clarity, only the
subhyperplanes corresponding to the top two levels in the tree are shown in the
last case.

Figure 29.1
A binary tree for 25 triangles is
shown on the left; the resulting
point set in the middle; and the
point set resulting from 250 trian-
gles on the right.

29.8 Developing for Multiple Geometries

The main advantage of developing algorithms by separating combinatorial and
geometric steps is the gain in software development and maintenance time. De-
velopers of a geometric library handling g geometries and a algorithms would
not need to write ga implementations, but only g geometric infrastructures and
a algorithms.

Another advantage of developing algorithms that can be simultaneously
used under multiple geometries is the ensuing simplification in unit testing.
If one module or unit test is required for each of a algorithms, it would be
sufficient to write a tests and ensure that the different geometries are covered
in the tests. In this way one can conceivably port software written for Euclidean
geometry to spherical geometry or vice versa.

Algorithm
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1 2 3 4 5
A
B
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D

?

?

?

?

?

We would like in general to layer our geometric systems so that we con-
sider problems one at a time, isolating and developing modules as the project
proceeds. Yet as with many geometric systems [52], BSP trees offer an exam-
ple where the issues become intertwined. Floating point filters (which were
briefly alluded to in Chapter 7) do not help with BSP trees [56]. Floating point
filters work on the premise that most predicates will make an “easy” decision,
where, say, the test between the sidedness of a point and a hyperplane occurs
most often when the point is not near coincidence to the hyperplane. Handling
inputs of nontrivial size with BSP trees means that the number of predicates
where a point will be tested against a hyperplane to which it is indeed incident
will grow rapidly. This occurs already for nodes at a very low depth in the
binary tree. The result is that floating point filters will fail so often as to render
them useless. If the filters trigger computations based on the underlying exact
implementation and that underlying implementation continues to require more
bits, then we have the recipe for an algorithm that is theoretically correct but
useless in practice.
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Such a vast gap between theory and practice is an indication of why writing
the time and space complexities of an algorithm assuming constant time per
real number operation is an incomplete metric. Analysis must also account for
the order of constructibility of objects used by the predicates of an algorithm
and the ensuing growth in the size of these objects.

Practitioners are also not immune to missing serious issues in their imple-
mentations. The current practice is that one or a few carefully selected ex-
amples suffice to convince reviewers that an algorithm is sound and practical.
Yet that is no guarantee that the algorithm can indeed be used for an arbitrary
input.

BSP trees make it possible to compute regularized Boolean operations.
A more general alternative is to use Nef polyhedra [11, 45], which make it
possible to construct and manipulate arbitrary point sets.

29.9 Exercises

29.1 The convex hull of a set of points P in the plane is a minimal sequence
of points C ⊂ P such that points in P are colinear or lie on the left side
of each pair of consecutive points in C [83, 74, 30].

This definition can be interpreted in either E 2 or S 2. Write a generic
C++ function that computes the convex hull in either geometry. Assume
that the points in S 2 all have z > 0.

29.2 Generate a PostScript rendering of your solution under both E 2 and S 2

in Exercise 29.1.

29.3 Repeat Exercise 29.1 for Delaunay triangulations [63].
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30 Constructive Solid Geometry

Constructive solid geometry (CSG) is computing’s equivalent to building solids
out of physical primitives. Two primitives can be assembled into a larger one,
space can be carved out of a primitive, and, farther from a physical manipula-
tion, the intersection of two objects can be determined.

As with binary space partitioning, also in constructive solid geometry solids
are represented using trees. In both a BSP tree and a CSG tree primitives are
stored at leaves, but whereas they are defined in a BSP tree implicitly by the
intersection of a node’s ancestors halfspaces, primitives are defined from ele-
mentary building blocks in a CSG tree and Boolean operations are stored in
interior nodes to assemble the primitives into the desired compound solid.

30.1 A CSG Example

Consider that we wish to construct a rectangular slab in which four holes will
be drilled to accommodate four rivets. Two methods are possible. We could
start from a slab and remove four cylinders one after the other, or we could start
by building a solid consisting of the four cylinders and remove the resulting
solid from the slab. The “remove” operation here is the Boolean difference
operation.

When representing each such negative space using a cylinder, note that the
planar facets of the cylinder need not share the planes of the slab. Each cylin-
der’s height should instead be larger than the thickness of the slab to protrude
on both sides of the slab.

30.2 CSG Class Diagram

We wish to represent an arbitrary solid that can be constructed by applying
Boolean operations from primitive solids. Boolean operations will consist of
the set {union, intersection, difference} and primitive solids will consist, say,
of the set {cube, cylinder, cone}. A binary tree will represent the solid we are
modeling in which the primitive solids are leaf nodes and the interior nodes
are Boolean operations. A transformation node also needs to be introduced
to make it possible to position a primitive at an arbitrary position in space.
Transformation nodes will also be interior nodes.
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This suggests the following constraints on the class relationships.

• A node is either a Boolean operation, a Primitive solid, or a Transforma-
tion.

• An Interior node is a Boolean operation or a Transformation.

• A Leaf node is a Primitive solid.

• A Transformation node has a Primitive solid node as its single child.

• A Boolean operation has two Interior node children.

This suggests the inheritance hierarchy in Figure 30.1.

Figure 30.1
CSG inheritance

hierarchy—first try

Node

Primitive node Transformation node Boolean operation node

Cylinder ConeCube

Leaf node Interior node

2

1

But there is no need to distinguish explicitly between an interior node and
a leaf node, and so the hierarchy in Figure 30.2 will be sufficient. Observe
that even if the designer imposes that primitives be already positioned at the
desired location in space before attaching the corresponding nodes to the tree,
a Transformation node class remains necessary, as we will see shortly.

Figure 30.2
CSG inheritance hierarchy

PrimitiveNode Transformation node Boolean operation node

Cylinder ConeCube

Node
2

1

The resulting UML class diagram arises frequently: This composite design
pattern [39] is encountered in domains from text editors to scene graphs. It
is worth iterating the bare version of this pattern in Figure 30.3 to relate the
names of its classes to those of a CSG class diagram.

Figure 30.3
The composite design pattern

Component

Leaf1 Leaf2 Composite
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30.3 CSG Object Diagram

Suppose that we wish to build an L-shaped figure or an angle bracket. The
bracket could be constructed in one of several ways, perhaps using union or
difference. Choosing to represent the bracket using a union operation leads
to the adjacent object diagram. Recall the distinction between class and object
diagrams: A class diagram is fixed once the program has been written, whereas
an object diagram represents a snapshot for a running program of the machine’s
state.

The object diagram that results in this case is a tree, but this need not be the
case. If the object being constructed contains some redundancy—four identical
wheels in an automobile, an airplane’s two wings that are identical by reflec-
tion, and so on—one node would be referenced by multiple transformations
yielding multiple instances of a subtree. Yet since a part cannot consist of in-
stances of the whole, the graph may not contain cycles. The resulting graph
is a directed acyclic graph (DAG). DAGs are also at the core of another mod-
eling schema, scene graphs such as the Virtual Reality Modeling Language
(VRML).

⋃

Cube

T

Cube

T

30.4 Point Classification

A first application for a CSG system is point classification. The CSG solid is
queried with a point and is asked whether the point lies inside, outside, or on
the surface of the solid. An implementation would define an abstract function
Node::classify that will be overridden by the classes in the CSG hierarchy.

template<

typename Point,
typename Neighborhood,
typename Transformation>

class Node {
public:

virtual Neighborhood classify(const Point& p) = 0;
...

};

As with BSP trees, we can plug some Euclidean geometry at a given di-
mension into the generic CSG classes. In this way a transformation is to be
understood as a type parameter for a concrete transformation class in the cho-
sen geometry. The neighborhood (§ 30.6) class and the point class are also type
parameters.

Since the client only has a pointer to the root of the CSG DAG, it is the root
node that will first receive the query message. The message is sent down the
tree to the leaf (primitive) nodes, each of which will know how to compute a
local answer. The answers are then assembled on the way up. Transformation
nodes will transform the point on its way down but will not affect the reply.
Boolean operation nodes will only pass the request to their children and will
apply the particular operation they define on the reply on its way up the DAG.
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30.5 Regularization

The difficulty we encounter at this point results from our sloppiness in taking
the term solid as obvious enough not to need to be defined. To see that the term
is not obvious, it is sufficient to consider the problem in one dimension, where
a solid becomes a segment in E 1, though it is more convenient to use the term
interval instead.

An interval in E 1 is defined by two points and consists of the set of points
between the two bounds. An interval may be either closed or open at either
endpoint. Boolean expressions can be readily constructed on intervals. An
expression such as [1, 3] ∪ [3, 5] evaluates to [1, 5]. An expression such as
[1, 3]− [3, 5] evaluates to [1, 3[. The ability to encode open and closed intervals
means that it remains easy to evaluate expressions such as [1, 3]∩ [3, 5], which
results in [3, 3], and [0, 6] − ([1, 3] ∩ [3, 5]), which results in the disjoint set
[0, 3[∪]3, 6].

Although this interpretation of Boolean expressions is intuitive as intervals
on the reals, it ceases to be intuitive if we interpret an expression as a (physical)
solid. If each interval is meant to capture a cylinder of unit diameter along the
x-axis in 3D, for example, it would be natural to interpret an expression such
as [1, 3] ∩ [3, 5] not as a volumeless unit disk at the value x = 3, but as the
empty set. Similarly, we wish to think of the expression [0, 6]− ([1, 3]∩ [3, 5])
as resulting in a single cylinder [0, 6] rather than in two cylinders equivalent to
two semi-open intervals.

This trouble results because the operators that we apply on solids result
formally in solids that have no volume or that do not include (a subset of)
their boundary, whereas intuitively solids that have no volume have effectively
“vanished” and a solid always includes its boundary.

Such an inconsistency between the formal and the intuitive interpretation
of operators can be resolved by enforcing these two constraints. This enforce-
ment, or regularization, will be applied to the outcome of each Boolean opera-
tor. Thus, it is best to replace the formal Boolean operators with more intuitive
ones, regularized Boolean operators, which are denoted by an additional as-
terisk.

In one dimension, regularization effectively disallows open intervals and
discards intervals whose two endpoints are equal. The cylinder equivalent to
[1, 3] ∩ [3, 5] now becomes the empty set and the one equivalent to [0, 6] −
([1, 3] ∩ [3, 5]) becomes a single cylinder.

30.6 Neighborhood

Neighborhood captures adjacency. The neighborhood of a point P (x) in E 1

is the set of points lying in (x − ε, x + ε) for a small ε. Similar notions apply
in E 2 and in E 3. To represent whether the neighborhood of a point in one of
these two geometries is inside the set in question, one uses a point set defined
on S 1 or on S 2, respectively.
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Even if the client programmer has no need for the neighborhood at a point
and would be content to know whether a given point is inside, outside, or on the
boundary of a set, neighborhoods are necessary intermediate results during the
propagation of the answer from leaf nodes through the Boolean operators up
the tree. To see why, consider in E 1 the value returned from the two operations

5
?
∈ [1, 5] ∪ [5, 9]

and
5

?
∈ [1, 5] ∩ [5, 9].

The number 5 lies in both cases on the boundary of the two intervals, but
how could such two values be combined using a union or an intersection oper-
ation to yield the required “inside” and “outside” answers, respectively?

The information missing and that needs to be propagated is the neighbor-
hood of the point [86]. In E 1 two additional flags are needed. A left, L, and
a right, R, Boolean flag will both be true if the point is strictly in an inter-
val. One or the other will be set to false if the point is in the interval, but its
neighborhood on one side is not.

This additional information is in fact all that’s needed (and could conceiv-
ably be implemented by defining S 0, though that would perhaps be excessive).
The interpretation of the pair of Boolean flags is as follows:

1. L=false and R=false =⇒ the point is outside the cylinder.

2. L=false and R=true =⇒ the point is on the boundary (on the left end of
the cylinder).

3. L=true and R=false =⇒ the point is on the boundary (on the right end
of the cylinder).

4. L=true and R=true =⇒ the point is strictly inside the cylinder.

The implementation of neighborhood in E 1 will reveal the distinction be-
tween the difference operator we expect and the subtraction operator in C++.
C++ defines false − true as true, whereas we wish for the difference to evalu-
ate to false. The problem is avoided by writing the difference as a && ! b.

To generalize the notion of neighborhood to two and three dimensions,
we define primitives in two dimensions to be a set of polygons and would
implement regularized Boolean operations requiring the maintenance of an S 1-
neighborhood for the point queried. One way to think of this use of S 1 is by
analogy to a pie. Arbitrarily sized slices of the pie can be taken out—they
need not be adjacent. If the pie is empty, the point is outside; if the pie is
complete, the point is inside; and if the pie is partially complete, the point is
on the boundary. The usual robustness problems will apply if one wishes to
detect accurately that a point lies on the boundary.

empty
(outside)

partial
(boundary)

full
(inside)

In a rendering application knowing the normal vector is crucial since it
makes shading possible. The normal vector to an E 2-solid can be extracted
from the S 1-neighborhood.

1. If the point is on an edge, its neighborhood is described by the normal to
the edge. The normal is directed outside of the solid being represented.
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2. If the point lies on a vertex, its neighborhood is described by a set of
pairs of normals.

edge vertex In practice, just a single pair of normal vectors will be used to represent
a vertex. If more than a pair of normals are needed to represent a vertex,
the polygon represented is said not to have manifold topology (§ 27.2) at the
vertex.

If we are representing solids in E3, the data structure needs be augmented
yet again. The neighborhood can be one of the following (omitting the cases
where it is either a full ball or the empty set):

1. The point is on the face of polygon representing the boundary of the
solid. The neighborhood will be described by a single normal vector.

2. The point is on an edge of the solid. The neighborhood is described by
a pair of normal vectors. A set of pairs of normals may be allowed. This
case is similar to the case of the neighborhood of a point in 2D. In 3D
it signifies that multiple faces meet at one edge. A CSG system must be
able to handle such a neighborhood as an intermediate result even if the
final solid being constructed is not allowed to have such a neighborhood.

3. The point is on a vertex of the solid and the neighborhood is described
by a set of normal vectors. These normal vectors describe the polygons
adjacent to the vertex. Once again, a set of sets of such normal vec-
tors may be needed, in which case the vertex is degenerate and multiple
“spikes” of the solid meet at one point in space. But there is an additional
complication: It is possible for one such “spike” to contain a hollow, or
a negative space, of a set of normals.

Ray Casting

To determine the intersection of a ray with a CSG solid, the ray is percolated
down the tree to the leaves (and transformed along the way at transformation
nodes). The intersection of the ray with each solid at a leaf node is determined
as an interval on E 1 along the ray with the same origin as the ray. As the
intervals are percolated back up the tree, regularized Boolean operations are
performed on the intervals, possibly using BSP trees. At the root, the lower
boundary of the first interval is reported as the nearest intersection.

30.7 Exercises

30.1 Implement ray casting on a CSG expression in E 2. Choose an appropri-
ate method for computing Boolean operations on intervals in E 1.

30.2 Implement ray casting on a CSG expression in E 3. Also, choose an
appropriate method for computing Boolean operations on intervals in
E 1.

30.3 A simple way for computing areas and volumes is to use random sam-
pling. Implement a system for a CSG tree in E 2 that estimates the area of
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the expression by selecting a large set of random points in a box bound-
ing the solid in the plane and classifying each point. The required area
is the ratio of points inside the solid over the sum of points inside and
outside the solid multiplied by the area sampled. Choose some accept-
able tolerance (say 1%) and then determine the number of random points
needed for the area to fall within that tolerance from the area calculated
exactly (by hand). What is the likelihood for a random point to lie on
the boundary of one of the primitives?

30.4 Repeat Exercise 30.3 in E 3.
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Part VII

Vector Visibility
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31 Visibility from Euclidean to Spherical Spaces

Given an observer and a set of triangles (or other piecewise linear geometric
objects) in the Euclidean plane, we wish to determine the subset of the trian-
gles’ edges that are visible from the observer. If we assume that the observer is
omni-viewing, the view is naturally captured on the surface of a circle centered
at the observer. This chapter discusses a solution for this problem, vector vis-
ibility in 2D. This classical problem in “flatland” has many applications such
as rendering scenes consisting of 3D mazes, which can be adequately modeled
using a 2D visibility algorithm.

31.1 Incorrectness of Sorting by Distance

Before discussing how one can compute visibility, we spend a moment dis-
cussing what cannot be done. It is tempting to assume that one can reduce
visibility to sorting, but we will see that sorting is inadequate in 2D, and hence
it is also inadequate in 3D.

Suppose the input consists of a set of segments in the plane and one wishes
to determine the segments visible from the viewer. It is tempting to assume
that the correct near-to-far order from the viewer can be determined by sorting
the distances of one sample point on each segment. As the counterexample
shown in the adjacent figure suggests, choosing the midpoint of each segment
and sorting using the resulting set of points may lead to an incorrect depth
order.

h

hc

g
gc

d(gc) < d(hc)

31.2 Representing the Output

2D visibility results in a partitioning of S 1 into spherical segments. Each
spherical segment corresponds to a segment in a scene polygon. As discussed
in § 28.4, by orienting the polygons clockwise, the circular projection at a
viewer located outside the scene polygons will be oriented counterclockwise.
The partitioning of S 1 also consists of a set of spherical points. Each point
corresponds to the projection of a scene vertex on S 1.

Notice that we are unable to constrain the resulting set of spherical seg-
ments to be minimal. As illustrated in the figure, a point E may be induced
on an input segment following the construction of the E 2 BSP tree for depth
order. Visibility is then determined for a set of three segments and E′, the pro-
jection of E, will arise in the output. If one wishes, it is possible to purge such
extra vertices after visibility is complete.

E

E′
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31.3 Data Structures for 2D Visibility

The scene consists of a set of pairs, where each pair joins a triangle with some
material type. Since the interior of triangles cannot be seen from an observer
situated outside the triangles, it is not necessary to capture the interior material
(generically termed attributes in § 29.2). The relevant material is instead that
of the boundary of the triangles.

The triangles are inserted in an arbitrary order (though the order can affect
time and space requirements [78]) into a BSP tree in E 2. A BSP node E2 in-
stance represents the scene in E 2. The view is also represented by an instance
of a BSP tree, but one in S 1. The type in that case is BSP node S1.
template<typename NT, typename Material>
class View E2
{
public:

// Types for scene
typedef std::pair<Triangle E2<NT>, Material > Triangle and material;
typedef std::vector<Triangle and material > Scene;

// Types for scene as BSP tree
typedef BSP E2< NT, Material, char > BSP geometry E2;
typedef typename BSP geometry E2::BSP convex polytope BSP E2 convex polygon d;
typedef typename BSP geometry E2::Sub hyperplane BSP E2 segment d;
typedef BSP node< BSP geometry E2, Material, char > BSP node E2;
typedef typename BSP node E2::Boundary list Boundary list;

// Types for view tree
typedef BSP S1< NT, char, Material > BSP geometry S1;
typedef typename BSP geometry S1::BSP convex polytope BSP S1 segment d;
typedef typename BSP geometry S1::Sub hyperplane Sub hyperplane d;
typedef BSP node< BSP geometry S1, char, Material > BSP node S1;
typedef typename BSP node S1::Interior list Interior list;

...
};

The View E2 class is parameterized by the number type as well as by the
material, or surface attribute, of the scene triangles. Whereas the material is
a boundary attribute in E 2, it becomes an interior attribute in S 1. BSP trees
provide a function for collecting the interior (§ 29.6) as well as a function for
collecting the boundary (§ 29.7). The latter is used for extracting data from the
first tree and inserting to the second.

31.4 Computing the View

Computing the view is done in two steps. First the depth order from the ob-
server is established, and then the resulting set of segments is inserted in front-
to-back order to construct the view.

To extract the segments on S 1 that together form the view, a special seg-
ment is initialized to the complete set of directions (S1 FULL). That set is then
recursively divided. The occupied cells among the leaf nodes are collected into
a list capturing the view.
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View E2(
const Scene & triangles,
const Bbox E2<NT> & bbox,
const Point E2<NT> & observer)

{
get depth order( triangles, bbox, observer );
determine view( front to back list, observer );

const BSP S1 segment d S1(S1 FULL);
view segments = view tree.get convex polytopes(S1);

}

31.5 Computing the Depth Order

To determine the depth order, the scene triangles are inserted into the BSP tree
in E 2 using Boolean union. At this stage the boundary material of each triangle
is also inserted. If the scene is static and the observer moves, the same BSP
tree can be used for determining the different depth orders. The front-to-back
order is computed by querying the tree from the position of the observer.

void
get depth order(

const Scene & triangles,
const Bbox E2<NT> & bbox,
const Point E2<NT> & observer)

{
typedef typename Scene::const iterator Scene CI;
for( Scene CI ti = triangles.begin(); ti != triangles.end(); ++ti )

// auto promotion of ti−>first
tree.boolean union( ti−>first, ti−>second, 0 );

const BSP E2 convex polygon<NT> initial convex polytope(bbox);

front to back list = tree.get boundary(
initial convex polytope,
observer );

}

31.6 Reducing Visibility to Boolean Operations

After we compute a list of the input segments ordered by depth, visibility is
determined by processing the segments from near to far. A mask in S 1 could be
used to store the set of segments so far encountered. Only those portions of a
segment lying outside the mask are visible [55]. If the mask and the view after
segment si−1 is processed are Mi and Vi, then the two Boolean operations

Mi+1 = Mi ∪ si,
Vi+1 = Mi − si
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would incrementally update the mask and determine the visible scene frag-
ments.

Yet it is unnecessary to maintain a mask; a BSP tree in S 1 can hold the view
and can also act as a mask. Attribute stability (§ 29.2) ensures that the material
of invisible fragments does not affect the view and that invisible fragments are
quietly discarded. Thus, in the following code a single invocation of Boolean
union suffices to determine the view. But first each E 2 segment is projected
onto S 1 centered at the observer by two point-subtraction operations.

void
determine view(

const Boundary list & front to back list,
const Point E2<NT> & observer )

{
typedef typename Boundary list::const iterator Segment CI;
for( Segment CI si = front to back list.begin();

si != front to back list.end(); ++si )
{

Point S1< NT > src( observer, si−>first.source() );
Point S1< NT > tgt( observer, si−>first.target() );

BSP S1 segment d s( src, tgt );

view tree.boolean union( s, 0, si−>second );
}

}

31.7 Example of Vector Visibility

The discussion in 2D may be interesting in its own right, but it is mostly inter-
esting as a prelude for visibility in 3D. Had we only been interested in comput-
ing visibility from E 2 to S 1, then either a randomized incremental or a rota-
tional sweep algorithm would have also been adequate [35]. The advantage of
the present approach is that the exact same set of functions can be implemented
for computing visibility from E 3 to S 2. This is such the case, in fact, that one
would be able to implement a single view class that is parameterized with a
generic Euclidean geometry and with another generic spherical geometry. But
for now we look at determining the 2D view of the set of triangles shown in
the adjacent figures.

To render a scene, we construct a View E2 instance from a scene consisting
of a set of triangles, a bounding box, and an observer.

const Point E2d observer(0, 0);
const Bbox E2d bbox( Point E2d(−6,−6), Point E2d(5,6) );
const View E2d view( triangles, bbox, observer );

render(triangles, ”psout/e2 to s1 scene1.eps”, observer, view, bbox);
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The adjacent figure is then rendered from the triangles in E 2 and the view in
S 1.
void render(const Scene& triangles,

const string& filename,
const Point E2d& observer,
const View E2d& view,
const Bbox E2d& bbox)

{
Postscript d PS(filename, bbox);

Interior list view segments = view.get view segments();

Scene::const iterator triangle ci = triangles.begin();
PS.set line width(0.8);
while( triangle ci != triangles.end() ) {

PS.set gray stroke( triangle ci−>second );
PS.draw( triangle ci−>first );
triangle ci++;

}

PS.set gray stroke( 0.0 );
PS.draw(observer);

Interior list::const iterator ci = view segments.begin();
while( ci != view segments.end() ) {

PS.set gray stroke( ci−>second );
PS.draw( ci−>first.get Segment S1(), observer, 1.0 );
ci++;

}

PS.close();
}

31.8 Exercises

31.1 Give an example to show that the view of two segments in the plane
from a viewer may not be determined by sorting the two segments using
the closer of their two endpoints.

31.2 Repeat Exercise 31.1 to show that the heuristic of sorting by the dis-
tance from the source of each segment (with input triangles consistently
oriented) is also flawed.

31.3 Consider the case of an observer moving in a static scene consisting
of a set of triangles. Develop an interactive system that uses the class
View E2 to determine the view and that renders a rasterized version of
the view interactively as the user drags the mouse to simulate the motion
of the observer. Calculate the view direction from the last two distinct
points the user has sampled.
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32 Visibility in Space

The text concludes with an algorithm for visibility in 3D. This chapter merely
pulls together the ingredients, as they have all already been encountered. Dis-
carding invisible sets relies on the use of Boolean algebra on regular sets
(Chapters 28 and 29) adapted to spherical geometry (Chapters 8 and 9). By
using rational numbers as the number type (Chapter 7) and ensuring that the al-
gebraic degree of intermediate objects and predicates remains low (Chapter 6),
it is possible to design and implement a 3D vector visibility system that never
fails. The resulting half-edge data structure is constructed using only two Euler
operators (Chapter 27).

Using a general and layered solution to this most intriguing and most clas-
sical [108] of problems in computer graphics and computer-aided design may
be what is missing to spur vector rendering. Raster images are well suited for
raster displays, but they are ill-matched to the printed page, which are capa-
ble of significantly higher resolutions than can be afforded by raster images.
The computation of the spherical visibility map [56] may be a suitable starting
point for large areas of computer graphics to be restudied with the objective
of producing pure vector shaded synthetic imagery aimed at the printed page.
The reader interested in a survey of the vast visibility literature is referred to
the work just cited for starting pointers.

32.1 Spherical Projection

When bound by a physical medium—a planar canvas, the printed page, or a
computer screen—planar projections (§ 11.4) are the appropriate model. But
more abstractly, a sphere captures omnidirectional viewing and is the natural
projection medium. Spherical visibility is suitable as preprocessing; any planar
projection can subsequently be generated by central reprojection onto a planar
surface.

A spherical projection is concisely specified by no more than the location
of the observer, whereas the observer location, a viewing direction, and the
field of view are needed to specify a planar projection.

In a spherical projection, a point in E 3 maps to a point in S 2 defined by the
direction from the observer to the Euclidean point. A segment in E 3 also maps
to a segment in S 2 (unless the observer lies on the segment’s carrying line). P

Q
−→
N

O

Even though we will not perform computation directly on lines in space,
their projection on a sphere provides insight. A line in E 3 also projects to a
segment in S 2. The endpoints of the image segment are antipodal points and
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have the same direction as the line. Comparing spherical with planar projec-
tion, we observe that whereas the two points at infinity of a line are identified
since they project to a single point on a plane, the two points at infinity of a
line project to two antipodal, but distinct, spherical points.

Two parallel lines that are coplanar with the observer project to the same
spherical segment. A set of parallel lines in general project to distinct spheri-
cal segments, but to ones that share the same pair of antipodal spherical points.
Multiple sets of parallel lines that are coplanar project to spherical points that
are colinear. The ideal line of the plane of the sets of lines projects to a spheri-
cal circle defined by the normal direction of the plane. A set of parallel planes
have ideal lines that project to the same spherical circle.

32.2 Constructing a DCEL Embedded on S 2

The steps needed for computing visibility in space are identical to those used in
the plane—indeed, a generic implementation projecting from En to Sn−1, for
n = 2, 3, would be possible, although at the time of this writing the 3D imple-
mentation is independent from the present infrastructure. A depth-sorted list
of primitives is projected on a sphere centered at the observer and the Boolean
union is incrementally computed. As with 2D projection, attribute stability
(§ 29.2) ensures that simple union discards invisible features.

After iterating over the scene input, a set of spherical polygons are im-
plicitly represented in the tree. Each edge bounding a polygon is defined by
an edge in the scene. Each vertex is defined by two adjacent edges. If the
two edges are also adjacent to the same scene vertex, the vertex on the sphere
is the projection of that scene vertex. Otherwise it results from the apparent
intersection of two scene edges.

The sequence of vertices of a polygon in S 2 can be obtained from the
sequence of spherical circles describing the polygon. If the order in which two
spherical circles is determined, then one can define one of the two antipodal
intersections to be the point of intersection (§ 9.5). For this convention to hold,
we also have to ensure that all spherical polygons are convex. In the figure the
point P is uniquely defined by the ordered pair of circles (A,B).

A

B a

b P

For many applications it would be sufficient simply to extract the resulting
set of spherical polygons; each polygon will correspond to a leaf in the BSP
tree on S 2. Yet it is more interesting to contruct a doubly connected edge list
(Chapter 27). A DCEL stores the adjacency of the resulting spherical image,
which can in turn be used if one wishes to refine the output further. One ap-
plication is the determination of shadows. Each pair of spherical polygons that
are adjacent in the DCEL but whose corresponding scene polygons are not ad-
jacent signal a shadow cast from one polygon onto the other. A DCEL is also
an ideal representation if visibility is one step in a work flow, for modifying
attributes or even changing the position of vertices through a warping effect
would be possible without destroying the underlying structure.

To construct a DCEL, a recursive function is passed an initially unparti-
tioned sphere and a pointer to the root of the tree. The first (root) partition
is special and is treated separately. A flag signals that the DCEL is the full
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sphere. The two endpoints of the subhyperplane corresponding to the root of
the tree define two spherical points and the root partition is defined using these
two spherical points and their antipodes. A special DCEL function then creates
the necessary four halfedges.

Only two Euler operators are needed after the initial partition is complete.
The convex spherical polygon corresponding to each node in the tree is main-
tained recursively and the face in the DCEL to which it maps is also main-
tained. As an interior node spawns two children, so is the face in the DCEL
also partitioned into two faces. If exact arithmetic is not used, this becomes
a numerically delicate operation, for the case of a vertex lying on a partition-
ing plane needs to be detected. If it is not, a second vertex will be mistakenly
inserted near the first one. The splitting plane may intersect two spherical
segments in their interior or it may pass through one or two vertices. In the
first case the Euler operators split edge and make edge face are used. In the
second, only make edge face is needed.

32.3 Exercises

32.1 The accompanying code labeled “inside-sphere-view” may be used for
visualizing the vector view of a scene as seen from a viewer. The user
interface allows you to manipulate the near clipping plane and the field
of view (see Chapter 15). Occasionally the quality of the image deterio-
rates. Inspect the image to determine the criteria under which it does.

32.2 In § 32.2 a special DCEL function was used for the root partition. De-
scribe instead how this initial partition can be created using only a se-
quence of Euler operators.

32.3 Given one triangle in E 3, develop a function that constructs a DCEL on
S 2 by partitioning it sequentially at the three edges.

32.4 Repeat Exercise 32.3, but implement recursive partitioning and make it
possible to handle an arbitrary convex polygon.

32.5 Solve Exercise 32.4 and then construct the spherical view of a set of
polygons that do not overlap as seen by an observer.

32.6 Use the start-up program labeled “inside-sphere-view” to visualize the
spherical view you constructed in Exercise 32.5.




	

��

Appendices




	

��

A The PostScript Language

Even if a geometric system is developed with no visualization component as its
primary objective, such a component often becomes necessary, if for nothing
else, as a stimulant to further development.

The best training in geometric and graphical computing can be achieved by
writing raster or vector image files and using a utility to visualize one image
or a sequence of images making an animation without relying on prefabricated
libraries. Yet interactive computer graphics requires the use of libraries for
input and output, the subject of the next two appendices, and printing devices
require, most often, the use of the PostScript language, the subject of this ap-
pendix.

A.1 Introduction

Even if one is only interested in interactive visualization through a library such
as OpenGL (see Appendix B), there are several reasons why it may be inter-
esting to study PostScript.

1. PostScript does not require compilation, and, at the time of this writing,
it is one of the simplest methods for drawing diagrams.

2. PostScript is device-independent; it is available on all operating sys-
tems. A hardcopy of the execution of a PostScript program can also be
obtained by sending a file to almost any printer.

3. The PostScript imaging model defines the notion of a stack. It is easy
to practice stack-based visualization on PostScript before moving to
OpenGL’s stacks.

It is possible to study PostScript as simply an output device. One writes
a collection of statements controlling a virtual pen and these statements are
interpreted by a machine, a PostScript interpreter. But PostScript is also a
full-fledged programming language. Because PostScript was aimed at inter-
pretation by programs embedded in printers, the structure of the language, by
today’s standards, will appear somewhat arcane. Yet it is fascinating to observe
that one can write a geometric or a graphical system entirely in PostScript. Be-
cause the language is interpreted, programs written in PostScript will not be
efficient and one will, in general, want to minimize the amount of code written
in PostScript and instead write a system in another programming language that
generates the PostScript output.
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Thus, our sole aim from running a PostScript program is to obtain one
or more pages of output. Because the printed page will in effect be consid-
ered a fragment of the Euclidean plane and because PostScript was specifi-
cally designed for the printed page, the unit of measure is one that predates
the computing age: An inch consists of 72 “points.” A PostScript program
running on the interpreter of a printer fed with letter-sized, or 8.5 × 11-inch,
paper, will print the program on a virtual drafting board with the dimensions
612 × 792. If the same program is run on the interpreter of a printer fed with
A4, or 210 × 297-millimeter, paper, the area that can be printed will have the
PostScript dimensions 595.3×841.9. PostScript printers will in practice not be
able to print on a small margin around the page and some small margin should
therefore remain empty.

letter

210 mm
8.5”

A4

297
m

m
11”

When the command showpage is encountered by the PostScript program,
one page is passed to the output device and processing of the next page, if any,
begins.

To identify that a file does indeed contain a PostScript program, the first
few characters in the file should be the four letters %!PS. The % sign is a
comment marker and marks the rest of this, or any other, line as a comment
that should not be interpreted. The following three letters !PS declare the type
of the document. In general, a PostScript program will have the following
structure:
%!PS
<first−page>

showpage
<second−page>

showpage
etc...

where <first-page> is the sequence of commands that result in the first
page, and so on.

The PostScript language went through two main revisions and the defi-
nition intended of the possible three can be specified by writing one of PS-
Adobe-1.0, PS-Adobe-2.0, or PS-Adobe-3.0 instead of the more generic PS
label.

Because PostScript is a vector drawing language, no information related
to rasterization or to the raster resolution of the printing device appears in
the PostScript program. The idea is that the same PostScript program can be
interpreted on an arbitrary printer with a PostScript engine. A printer capable
of rasterizing at 600 dpi, or dots per inch, will produce a higher-quality output
than one printing at 300 dpi.

A.2 Encapsulated PostScript

What if one wishes to use a PostScript program not as an end in itself and
directly send it to a printing device, but as an intermediate step toward pro-
ducing a printed document? A file consisting of a PostScript program with
that intention is termed an encapsulated PostScript file. The convention of the
initial marker still holds, but since encapsulation was defined in version 2.0 of
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PostScript, the identifying string should signal version (%!PS-Adobe-2.0) or
a later one. A second line must also appear in the file indicating the bounding
box of the printed page to which one intends to output. Of course, the bound-
ing box could be easily deduced by a PostScript interpreter, but declaring such
a box helps intermediate programs know the extent of the diagram and thus
be able to apply an arbitrary transformation to it without forcing such interme-
diate programs to interpret PostScript themselves, which is not a trivial task.
The general form of an encapsulated PostScript file—to be saved with the file
extension .eps—is the following:

%!PS−Adobe−2.0
%%BoundingBox: xmin ymin xmax ymax
<commands>

showpage

Yet an encapsulated PostScript file (and implicit program) can itself be sent
directly to a printer. In that case a portion of the drawing will appear on the
printable bounds of the physical page. Even if the encapsulated PostScript file
is not intended to be printed by itself, it is wise to anticipate the need to debug
the output by printing the file and setting the four BoundingBox values to ones
that make the drawing fit comfortably inside a region of the smaller of the two
dimensions of A4 and letter-sized paper, or a box of 595.3× 792 points.

If a bounding box close to these limits is chosen, one obtains both ad-
vantages. The file can be embedded and when directly printed will use the
available space on the printed page.

A.3 Drawing Lines and Filling Polygonal Regions

To draw a chain of line segments, or a so-called polyline, one issues the com-
mand newpath to start the path and the command stroke to signal the end of
the polyline. The commands moveto, lineto, rmoveto, and rlineto move the
virtual pen to the location specified by the two preceding coordinates. The
pen is moved up, or without leaving a trace, if a move variation is issued and
it is moved down, while drawing a line segment, if a line variation is issued.
Commands that start with the letter r move the pen relative to its last position.

The dimension provided to the setlinewidth command is in the same scale
as the drawing and the line width is scaled along with the figure if the output
is magnified or minified. Writing 0 setlinewidth is possible, but it is a poor
choice to do so since a printer would use the thinnest line possible on that
printer, which varies from one to another. The line generated by a 2400-dpi
printer, for instance, would be one fourth the width of the same line on a 600-
dpi printer. Lines too thin also risk being imperceptible. The line width can be
set to a fraction of one point.

The cap and the join styles determined by the setlinecap and the setline-
join commands refer to how the line looks at the extreme and at the interme-
diate vertices, respectively.

The following table illustrates the style of line caps and line joins possible.
Line caps and joins can only be distinguished for lines of sufficiently large
widths.
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%!PS−Adobe−2.0
%%BoundingBox: 150 150 350 350

0 setlinecap
2 setlinejoin

10 setlinewidth

newpath
200 200 moveto
100 100 rlineto
0 −100 rlineto
stroke

Figure A.1
Line caps and line
joins in PostScript
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The following program illustrates that the last position of the pen may be
joined to the first by issuing closepath:

%!PS−Adobe−2.0
%%BoundingBox: 150 185 300 265

1 setlinejoin

10 setlinewidth

newpath
200 200 moveto
250 250 lineto
200 250 lineto
closepath
stroke

The closed area may be filled by issuing fill instead of closepath. In that
case, and as the program and accompanying figure below show, the interior of
the polygon is rendered, but its boundary is not (thus, the current line width
and line cap/join are irrelevant).

%!PS−Adobe−2.0
%%BoundingBox: 150 150 300 300

1 setlinejoin

20 setlinewidth

newpath
200 200 moveto
250 250 lineto
200 250 lineto
closepath
fill

Parameters appear before the corresponding commands because PostScript
uses an execution stack, discussed in §A.6.
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A.4 Region Overlap

The shade of the pen used may be set using the setgray command. A floating
point number in the range 0..1 is expected, where 0.0 is the darkest shade
(black) and 1.0 is the lightest (white). A related command for color is available.
Preceding drawing commands with 0 0.8 0.8 setrgbcolor, for instance, sets the
pen color to cyan.

%!PS−Adobe−2.0
%%BoundingBox: 150 150 450 450

% 0 is black; 1 is white

.6 setgray

200 275 moveto
200 0 rlineto
0 50 rlineto
−200 0 rlineto
closepath
fill

Consider this PostScript program consisting of two closed paths and two
fill commands. Figures overwrite what has preceded them. Because the Post-
Script interpreter is a rasterizing engine, its (grayscale) output is a large array
of Boolean flags describing the individual pixels to be rendered. Embedding
the interpreter in the printer considerably reduces the bandwidth needed to the
printer. This feature of the PostScript language means that a 3D drawing can
be properly rendered if depth order is computed and the planar projection of
the polygons appears in back-to-front order in the PostScript file (see BSP trees
in Chapters 29 and 28).

A.5 Arcs

Circles or circular sections are drawn using the arc command, which takes the
coordinates of the center, the radius, and the angle of the beginning and the
end of the section in degrees. arcn generates the complement of the circular
section by drawing the arc in counterclockwise order between the two angles.

%!PS−Adobe−2.0
%%BoundingBox: 10 50 290 350

% cntr.x cntr.y rad start angle end angle arc
% cntr.x cntr.y rad start angle end angle arcn

4 setlinewidth
0.5 setgray

100 300 20 0 360 arc fill

0.0 setgray
200 300 20 0 360 arc stroke

1 setlinecap
100 200 20 30 150 arc stroke
200 200 20 30 150 arc fill

0 setlinecap
100 100 20 30 150 arcn stroke

A.6 The Execution Stack and Function Definitions

PostScript’s convention of parameters preceding operators simplifies the task
of writing an interpreter. A PostScript interpreter maintains an execution stack
consisting of heterogeneous data elements. When an operator is interpreted,
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the parameters it needs are popped from the stack. moveto pops two items
from the stack and arc pops five items.

In addition to the execution stack, PostScript also maintains the current-
path, the sequence of path-drawing instructions issued so far by the program.
When either stroke or fill is encountered, the current path is rasterized onto the
output device and the current path becomes empty.

String versions of arithmetic operators are used: add, multiply, subtract,
and divide. Each of these binary operators pops its two operands from the
stack, computes the result, and pushes back the result on the stack. There is
also the unary operator negate.

PostScript maintains a dictionary, which associates literals with either val-
ues or procedures. As in more traditional programming, one may, for instance,
declare constants in one place to ensure that changing their value does not re-
quire more than localized editing. If one needs to repeatedly multiply by the
value 2.54, for instance, one can use the define command:

\inch 2.54 def

The define command causes two items to be popped from the stack and
causes the literal inch to be associated with the number 2.54 in the dictionary.
A backslash (\) precedes the literal to signal that the following string acts as
a literal and should not be interpreted. If inch (without a backslash) is en-
countered thereafter, the interpreter will replace the variable by its value in the
dictionary.

Each PostScript procedure consists of a sequence of commands, which,
when executed, modifies the state of the interpreter—by modifying the stack,
by sending elements to the output device, by modifying the dictionary, or by
modifying the current path. Since procedures can modify the stack, they can
also behave as functions.

If one wishes to draw in metric dimensions, for instance, it would be conve-
nient to define a procedure to convert from centimeters to PostScript’s space (in
which drawing a 72×72 square results in a square with one inch at each side).
The following procedure associates the commands 72 mul 2.54 divwith
the literal cm. When the procedure is invoked, which is done whenever cm ap-
pears in the program, the number at the top of the stack is multiplied by 72 and
then divided by 2.54.

/cm { 72 mul 2.54 div } def

A 2 × 2 grid can be drawn using the following program. The grid cells
have 4-cm sides.

%!PS−Adobe−2.0
%%BoundingBox: 90 120 306 276

/cm { 72 mul 2.54 div } def

0.05 cm setlinewidth

5 cm 5 cm moveto
4 cm 0 cm rlineto
0 cm 4 cm rlineto
−4 cm 0 cm rlineto
closepath stroke

7 cm 5 cm moveto
0 cm 4 cm rlineto
stroke

5 cm 7 cm moveto
4 cm 0 cm rlineto
stroke

showpage
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A.7 Loops

Looping Using Variables

Looping with the repeat command is achieved in PostScript using syntax sim-
ilar to procedure definitions. One writes n { commands } repeat to repeat
the sequence of commands between the two curly braces n times. The follow-
ing program illustrates repeat loops by drawing a set of vertical and horizontal
lines forming a grid.
%!PS−Adobe−2.0
%%BoundingBox: 68 68 220 148

2 setlinecap
0.5 setlinewidth

/zeroCounter { /counter 72 def } def
/incrementCounter {/counter counter 12 add def} def

% −−−−horizontal Lines−−−−
/horizLine { moveto 144 0 rlineto stroke } def

zeroCounter
7 {

72 counter horizLine
incrementCounter

} repeat

% −−−−Vertical Lines−−−−
/vertLine { moveto 0 72 rlineto stroke } def

zeroCounter
13 {

counter 72 vertLine
incrementCounter

} repeat

showpage

Notice that the definition inside the body of incrementCounter itself rede-
fines the value of counter—after incrementing it.

Looping without Variables—Stack Operators

Using variables in PostScript programs is possible and legal, but it defeats the
spirit of the language. Could the stack not be used to store temporary variables?
It can, but several operators become necessary and three are illustrated in the
revised program on the left below, which draws the same grid. One exchanges,
or swaps, the two top items on the stack. Another duplicates the top item.
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There are also the pop command, which discards the top item, and clear, which
clears the stack.

A more elegant, but also more wordy, version of the program on the left
is shown on the right. That version extracts the first iteration out of the loop.
Clearing the stack at the end is no longer necessary.

%!PS−Adobe−2.0
%%BoundingBox: 68 68 220 148

2 setlinecap
0.5 setlinewidth

/LLx 72 def
/LLy 72 def

newpath LLy
7 {

dup LLx exch moveto
144 0 rlineto stroke
newpath 12 add

} repeat
closepath
pop

newpath LLx
13 {

dup LLy moveto
0 72 rlineto stroke
newpath 12 add

} repeat
closepath
pop

showpage

For Loops

The for loop is also available to iterate between two numbers with the follow-
ing structure:

initial−value increment end−value { commands } for

At each iteration of the for loop, a value in the range is pushed on the
stack. All values, including the end value, are popped from the stack by the for
loop. The same grid can once again be generated using the following concise
program:

%!PS−Adobe−2.0
%%BoundingBox: 68 68 220 148

2 setlinecap
0.5 setlinewidth
72 12 144 { newpath 72 exch moveto 144 0 rlineto stroke } for
72 12 216 { newpath 72 moveto 0 72 rlineto stroke } for
showpage

A.8 Rendering Text

Three commands are needed to render text on the display device. findfont
searches for the font named on top of the stack and replaces the name by its
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description; scalefont scales the font description; and setfont sets the current
font.

Command Pop Push Action
findfont font name literal font description
scalefont font description; size font description (scaled)
setfont font description — set font

%!PS−Adobe−2.0
%%BoundingBox: 29 19 190 190

0.1 setlinewidth
newpath

50 50 moveto
70 50 lineto stroke

newpath
60 40 moveto
60 60 lineto stroke

/mytext {
(Cogito ergo sum) show

} def

/Helvetica−Bold findfont
10 scalefont
setfont
60 50 moveto
mytext

/Times−Bold findfont
8 scalefont
setfont
60 80 moveto
mytext

showpage Cogito ergo sum

Cogito ergo sum

The size of the font indicates the minimum distance between consecutive
lines to ensure that the risers of characters such as t and l do not interfere with
the descenders of characters such as g and p. Thus, at most six lines at font
size 12 or eight lines at font size 9 can fit in one inch. The origin of the axes
system remains at the lower left corner and the initial location of the pen is the
lower left corner of the printed text.

A.9 Writing a PostScript Class

In both this and the next appendix, we will be concerned with writing wrapper
classes—classes that encapsulate all Postscript or OpenGL output statements.
There are several advantages for writing wrapper classes:

1. If the decision to switch to a different output device is eventually made,
the burden of migrating would be significantly lower if all communica-
tion with the initial output device is localized.

2. It is easier to detect that two or more sections of a system need to produce
output of similar kind if the output is localized.

3. The initialization and much of the output code is repetitive from one ap-
plication requiring a certain output device to the next and the possibility
of reusing code is increased if initialization and output code is encapsu-
lated.
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Just as with programming the OpenGL machine (see Appendix B), Post-
Script maintains a state. The state can be both written to and read from. Dual
to the commands setlinejoin and setlinewidth, for example, are the commands
currentlinejoin and currentlinewidth, which push on the respective value on
the stack. The operator == can be subsequently used to pop one item from the
stack and print the value on the terminal. Unlike programming the OpenGL
machine, however, the session with a PostScript interpreter will normally not
be interactive, but one would rather save the PostScript program in a file to
be later printed or viewed. Thus, if we wish to have the ability to retrieve the
PostScript state, we must duplicate or cache some PostScript variables in a
wrapper class.

The mapping between commands in the class API and PostScript com-
mands is straightforward, but a complication arises if we decide to output an
Encapsulated PostScript file. Outputting an EPS file means that no output can
be made until the output file is complete and is ready to be closed. Because
EPS files require the appearance of a bounding box at the top of the file, and
because any output command can cause a change to the bounding box, the
bounding box needs to be adjusted incrementally as drawing commands are
sent to the PostScript class, which in turn means that the drawing instructions
must be cached in the PostScript class.

Many programs that output to PostScript write a file header. The objective
of the file header is to reduce the size of the output file, and since output com-
mands repeat frequently, it is an inexpensive way of compressing the output
file to write a brief header, even if it only has the objective of shortening the
subsequent commands.

/N {newpath} def
/M {moveto} def
...




	

��

B OpenGL

This appendix introduces the main functions of the interface defined by
OpenGL, a widely implemented and used layer of software separating the ap-
plication programmer from the raster graphics hardware. To remain operating
system-neutral, OpenGL does not define an event model. One user interface
library, GLOW, makes it possible to write portable programs following the
model-view-controller design pattern and is introduced in Appendix C. If in-
teractivity is not a design objective and only static images, especially ones
intended for inclusion in print, are needed, the PostScript language (Appen-
dix A) should be considered as a more suitable interface.

B.1 OpenGL Types and Functions

OpenGL renames many C types via typedefs. It is not necessary to use the
new typenames, but because all have the prefix GL, using them puts the reader
in context and makes the intention of the type evident. GLenum is one such
type redefinition. This ubiquitous type is used throughout OpenGL for vari-
ous heterogeneous tasks. Using the official identifiers also shields programs
from potential future changes, although it is quite common to see float used
rather than GLfloat, presumably on the assumption that the two will remain
synonymous.
typedef unsigned int GLenum;
typedef unsigned char GLboolean;
typedef unsigned int GLbitfield;
typedef void GLvoid;
typedef signed char GLbyte; /∗ 1−byte signed ∗/
typedef short GLshort; /∗ 2−byte signed ∗/
typedef int GLint; /∗ 4−byte signed ∗/
typedef unsigned char GLubyte; /∗ 1−byte unsigned ∗/
typedef unsigned short GLushort; /∗ 2−byte unsigned ∗/
typedef unsigned int GLuint; /∗ 4−byte unsigned ∗/
typedef int GLsizei; /∗ 4−byte signed ∗/
typedef float GLfloat; /∗ single precision float ∗/
typedef float GLclampf; /∗ single precision float in [0,1] ∗/
typedef double GLdouble; /∗ double precision float ∗/
typedef double GLclampd; /∗ double precision float in [0,1] ∗/

In addition to types, OpenGL also consists of a (large) set of functions; to-
gether the two constitute the OpenGL API. Because OpenGL functions do not
lie in their own namespace, they have the prefix gl. Also, the API does not use
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overloading. The client programmer needs to choose the variant of a function
suited to the particular type passed as parameter. For instance, glVertex2f is
one variant of many functions. A brief excerpt is shown below.
void glVertex2d( GLdouble x, GLdouble y );
void glVertex2f( GLfloat x, GLfloat y );
void glVertex2i( GLint x, GLint y );
void glVertex2s( GLshort x, GLshort y );

B.2 glBegin–glEnd Blocks

A central part of the OpenGL API is the glBegin–glEnd tuple. The OpenGL
state may be modified (using gl commands) and the state of the program itself
may also be modified using statements between these two statements, but the
central command is glVertex, which passes vertex coordinates for processing.
The correspondence of a visual effect to OpenGL statements is illustrated using
the diagram in Figure B.1 and the accompanying code excerpt.

void mydraw2(
float x, float y, float gray,
Point2f∗ points, int numPoints, GLenum type)

{
bool colorFlag = false;
glPushMatrix(); {

glTranslatef(x,y,0.0f);
glBegin(type); {

int i=−1;
while(++i != numPoints) {

if((type==GL TRIANGLES && i%3==0) ||
((type==GL TRIANGLE STRIP ||

type==GL TRIANGLE FAN) && i>2))
colorFlag = !colorFlag;

float f = colorFlag ? gray : gray + 0.2;
glColor3f(f,f,f);
glVertex2f( points[i].x, points[i].y );

}
} glEnd();

} glPopMatrix();
}

virtual void OnEndPaint()
{

glClearColor(1.0, 1.0, 1.0, 0.0);
glClear(GL COLOR BUFFER BIT);
glLoadIdentity();

drawBoard();

float i[] = { 0.0f, 160.0f, 320.0f, 480.0f };

mydraw1( i[0], i[2], 0.0f, points1, 6, GL POINTS);
mydraw1( i[1], i[2], 0.0f, points1, 6, GL LINES);
mydraw1( i[2], i[2], 0.0f, points1, 6, GL LINE STRIP);
mydraw1( i[3], i[2], 0.0f, points1, 6, GL LINE LOOP);

mydraw2( i[0], i[1], 0.6f, points1, 6, GL TRIANGLES);
mydraw2( i[1], i[1], 0.6f, points1, 6, GL TRIANGLE STRIP);
mydraw2( i[2], i[1], 0.6f, points2, 6, GL TRIANGLE FAN);

mydraw3( i[0], i[0], 0.6f, points3, 8, GL QUADS);
mydraw3( i[1], i[0], 0.6f, points4, 8, GL QUAD STRIP);
mydraw3( i[2], i[0], 0.6f, points2+1, 5, GL POLYGON);

}
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GL LINES GL LINE STRIP GL LINE LOOP

GL TRIANGLES GL TRIANGLE STRIP GL TRIANGLE FAN

GL QUAD STRIPGL QUADS GL POLYGON

GL POINTS

Figure B.1
Types of geometric primitives (op-
tions to glBegin) [99]

Because glBegin and glEnd should always appear in tandem, one can im-
prove the readability (and reduce the chance of forgetting to close the block of
code) by adding an extra block of curly braces.

B.3 Error Checking

Including error-checking code can often pinpoint errors or potential errors dur-
ing program development. The function GLenum glGetError() returns one at
a time the codes of the errors made so far. One would call glGetError in a
loop until the number returned is 0, signaling that there are no further errors to
report. If an error is found,
const GLubyte ∗ gluErrorString(GLenum i)

can be used to generate a literal byte array describing the error among the
following possible ones:
#define GL NO ERROR 0x0
#define GL INVALID ENUM 0x0500
#define GL INVALID VALUE 0x0501
#define GL INVALID OPERATION 0x0502
#define GL STACK OVERFLOW 0x0503
#define GL STACK UNDERFLOW 0x0504
#define GL OUT OF MEMORY 0x0505

The following code tests whether an error has been made after drawing
each frame and terminates the program if one has:
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static void checkErrors()
{

GLenum errorCode = 0;
bool errorFound = false;
while((errorCode = glGetError()) != GL NO ERROR) {

errorFound = true;
cerr << ”ERROR: ”

<< errorCode << endl;
cerr << ” ”

<< gluErrorString(errorCode) << endl;
}
if(errorFound)

exit(1);
}
The nonsensical GLenum passed to glBegin(..), for instance, causes the

following output.

OpenGL ERROR: 1280
invalid enumerant

B.4 Display Lists

Whenever a glBegin(...)–glEnd(...) pair is encountered, the central processing
unit (CPU) processes the intervening statements and sends the corresponding
data to the graphics processing unit (GPU). To avoid the penalty of repeated
processing on the CPU and also, particularly, the penalty of repeated CPU–
GPU communication, it is possible to define a display list. The signature of
the relevant commands is as follows:

GLuint glGenLists( GLsizei range );
void glNewList( GLuint list, GLenum mode );
void glEndList( void );
void glCallList( GLuint list );

Before creating a display list, a request needs to be made for one or more
display list numbers by invoking glGenLists and passing as parameter the
number of display lists requested. The integer returned is the identifier of the
first display list reserved.

The parameter passed to glNewList determines the display list being de-
fined and the glNewList–glEndList pair is used to wrap the gl commands con-
stituting the display list. The list can then be invoked in the rendering loop
using glCallList.

{
GLuint display list number = glGenLists(1);

initialize root level();

while(number of subdivisions−−)
recursive subdivide();
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glNewList(display list number, GL COMPILE); {
typedef vector<Triangle S2d>::iterator VIT;
for(VIT vit = V.begin(); vit != V.end(); ++vit) {

glColor3f((drand48()>0.5) ? 0.0 : 1.0,
(drand48()>0.5) ? 0.0 : 1.0,
(drand48()>0.5) ? 0.0 : 1.0);

glBegin(GL TRIANGLES); {
glVertex3f(vit−>P0().x(), vit−>P0().y(), vit−>P0().z());
glVertex3f(vit−>P2().x(), vit−>P2().y(), vit−>P2().z());
glVertex3f(vit−>P1().x(), vit−>P1().y(), vit−>P1().z());

} glEnd();
}

Other features of display lists not illustrated here are nesting of display
lists by calling a display list while defining another and the use of glCallLists
to trigger multiple display lists using one invocation.

B.5 Colors

The Color Buffer

To display an image on a raster output device, a color buffer is stored in de-
dicated memory. Each raster sample, or pixel, is saved in a quadruple of red,
green, blue, and alpha channels as illustrated in Figure B.2. The depth of the
color buffer is the number of bits needed to represent the four channels.

color
buffer

raster
display
device red

blue
green

red
blue

greenred

green

blue

alpha

Figure B.2
The color buffer and the raster dis-
play device

The command
void glClearColor(

GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha )

is used to set the color the buffer is set to upon clearing. If glClearColor is not
issued, the default of (0,0,0,1), or opaque black, is used. The clear color only
needs to be set once for each rendering context. Thereafter, the command

glClear(GL COLOR BUFFER BIT);

is used prior to rendering each frame to clear the color buffer to the preset
color.
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Using Colors Without Shading

Most often one wishes to shade, or generate colors as functions of the lights
and the materials in a scene (§B.8), but in many cases simply rendering an
object using a solid color suffices. Prominently, but not exclusively, this is the
case for user interface widgets.

The current color, including an alpha (or transparency) channel, can be set
using the function glColor4f:

void glColor4f( GLfloat red, GLfloat green, GLfloat blue, GLfloat alpha )

The default alpha value of 1.0 is used if we instead call glColor3f, which
takes three variables of type float, hence the 3f suffix:

void glColor3f(0.0f, 0.0f, 0.0f);

If a pointer to an array of three floats is needed, glColor3fv would be called
instead:

void glColor3fv( const GLfloat ∗v )

B.6 Double Buffering

A projector in a cinema achieves the effect of seamless motion by projecting 24
images per second, but since these images are consecutive on a film, there must
be a lag during which no image is projected. When rendering an animation on
a raster display device, one may wonder whether a similar principle might be
appropriate. One would display one image, clear the color buffer, display the
next image, and so on. Clearing the color buffer has the effect of displaying a
blank image at the current clear color. But however brief, the time it takes to
clear the display would be perceptible.

Worse yet, if the color buffer is visible while being written, the primitives
drawn first will be displayed longer and will thus be brighter. The answer to
both problems lies in double buffering.

The solution is to use two color buffers and to use a toggle that decides
which of the two buffers currently feeds the raster display device. Reading and
writing to the color buffer would be performed on the buffer not currently con-
nected to the display. When drawing of the current frame is complete, the client
issues the command glSwapBuffers() to request toggling the color buffer con-
nected to the display. The following instructions then resume reading to and
writing from the disconnected color buffer.

front
buffer

back
buffer

display
device

glutSwapBuffers()

The two buffers are referred to as the front buffer and the back buffer. The
front buffer is the one currently connected to the display and the back buffer is
the one accessed. The distinction is logical, not physical; after the buffers are
swapped, their names are also swapped.

One needs to request the allocation of storage for either one or two buffers
during the creation of the rendering context. Rendering is then said to be in ei-
ther single-buffer or double-buffer mode. The creation of windows and related
functions are delayed to Appendix C, which discusses GLOW, one library that
allows OpenGL to interact with the operating system and the window system.
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As will be seen in §C.4, it is not necessary to issue glSwapBuffers() when
using GLOW since that command is issued automatically at the conclusion of
rendering each frame.

B.7 The Pipeline and Transformations

The Graphics Pipeline

At its most abstract, OpenGL is a transformation and rasterization engine. The
engine is fed point coordinates describing a set of primitives (lines, polygons,
etc.) and a geometric transformation is applied to the coordinates. The trans-
formed primitives are then passed to the rasterization engine, which produces
a raster image. The hardware view, shown in Figure B.3, is never fully isolated
from the programmer while interfacing with OpenGL.

color
buffer

Vertex
Transformation Rasterization

glBegin(..);
...
glEnd();

Figure B.3
A simplified view of the graphics
pipeline

To pass vertex coordinates to the pipeline, the command

void glBegin( GLenum mode )

is used. The mode can be one of the constants GL POINTS, GL LINES, etc.
Even if one selects the single-buffer rendering mode, it is likely that some
primitives will remain invisible. Because OpenGL is only an application pro-
grammer’s interface, it allows implementations to cache data at various stages
for efficiency. The command void glFlush( void ) is used to flush the inter-
mediate buffers. In double-buffer mode, glSwapBuffers() issues an implicit
glFlush().

Transformations and the Matrix Stack

Two transformation matrices, the modelview matrix and the projection matrix,
are used (in that order) to map vertex coordinates. Rasterization follows. The
two transformation matrices are stored at the top of two matrix stacks. Only
the two matrices at the top of their respective stack can be accessed or modified
and also only the two top matrices affect vertices. Using a stack makes it easy
to use a new matrix temporarily and then pop the stack and resume with the
matrix now on top.

The next duo of instructions we encounter, and ones that will almost always
appear in tandem (and so it is convenient to create a redundant block to match
them), is the glPushMatrix()–glPopMatrix() pair. Both commands affect only
the current matrix stack, which can be set by calling either

glMatrixMode(GL MODELVIEW)

or

glMatrixMode(GL PROJECTION)
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Calling glLoadIdentity() initializes the top of the current matrix stack to the
identity transformation.

virtual void OnEndPaint()
{

// Set up projection matrix
glMatrixMode(GL PROJECTION);
glLoadIdentity();
gluPerspective(

fovAngle,
1.0 /∗aspect∗/,
1.0 /∗Znear∗/,
1000.0 /∗Zfar∗/);

// set up modelview matrix
glMatrixMode(GL MODELVIEW);
glLoadIdentity();
gluLookAt(

viewerxyz/1.5,
viewerxyz,
viewerxyz∗1.4,
0,0,0, 0,1,0);

// draw
glClearColor(1.0, 1.0, 1.0, 0.0);
glClear(

GL COLOR BUFFER BIT |
GL DEPTH BUFFER BIT);

glDisable(GL LIGHTING);
glColor3f(0.7,0.7,0.7);
glCallList(meshList);

glEnable(GL LIGHTING);

glPushMatrix(); {
glRotated(angle1, 0,1,0);

glPushMatrix(); {
glScaled(5,0.5,0.5);
glTranslated(0.5,0,0);
glutSolidCube(1.0);

} glPopMatrix();

glTranslated(5,0,0);
glRotated(angle2, 0,0,1);

glPushMatrix(); {
glScaled(5,0.5,0.5);
glTranslated(0.5,0,0);
glutSolidCube(1.0);

} glPopMatrix();

glTranslated(5,0,0);
glRotated(angle3, 0,0,1);

glPushMatrix(); {
glScaled(5,0.5,0.5);
glTranslated(0.5,0,0);
glutSolidCube(1.0);

} glPopMatrix();

} glPopMatrix();
}

Two details of matrix stack manipulation are crucial. The first is that matrix
pushing results in the matrix currently at the top of the stack being duplicated.
Since hierarchical structures such as articulated figures are common, the dupli-
cation of the matrix on top of the stack is particularly useful because it makes
it easy to mirror the transformations needed to process a scene graph—the di-
rected acyclic graph containing a mix of geometry and transformation nodes
that is commonly used to represent 3D scenes. The second important detail is
that matrix multiplication is applied on the right of the matrix currently on top
of the stack. Even though the rightmost matrix appears at the end of the list of
matrices, it is the first to be multiplied by the vertex coordinates. Figure B.4
shows the succession of the lists of matrices on the stack. Note that, in fact,
only the product of such matrices appears on the stack.

Two additional commands are frequently useful. An explicit matrix may
be loaded using glLoadMatrix[df] or multiplied by the current matrix using
glMultMatrix[df].
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Figure B.4
The effect of glPushMatrix() and
glPopMatrix() on the matrix stack

B.8 Lights and Shading

The functions glLight[fi][v] and glMaterial[fi][v] set the light parameters (geo-
metry and color) and the material (ambient, diffuse, specular, and emission)
parameters, respectively.

Designing and implementing a shading function is discussed in Chapter 21
and is, in this context, rather simple. The important detail to study concerning
lights is the transformations affecting it. One way to remember that the coordi-
nates of the light position are multiplied by the modelview transformation and
stored without multiplication with the projection transformation is that the lat-
ter destroys angles. If angles are not kept intact, the resulting (diffuse) shading
will depend on the relative position of the light with the surface to be shaded
and the viewer, rather than with the surface only.

If the light source follows an object in the scene, then
glLightfv(GL POSITION, ...),

which sets the location of the light, is used just as ordinary geometry would.
The current modelview transformation will act on both.

if (movingLightIsOn)
{

glPushMatrix (); {
glRotated(lightAngle, 0.0, 1.0, 0.0);
GLfloat position[] = { 30.0, 10.0, 0.0, 1.0 };
glLightfv(GL LIGHT0, GL POSITION, position);

glDisable(GL LIGHTING);
glColor3f(1.0, 0.0, 0.0);

glTranslated(movingLP[0],movingLP[1],movingLP[2]);
glutSolidSphere(1.0,8,8);

} glPopMatrix ();
}

If the light source is a “headlight” that follows the viewer, the modelview
matrix is reset to the identity matrix before glLightfv(GL POSITION, ...) is in-
voked with zero coordinates. The light position then coincides with the eye
position.
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glMatrixMode(GL MODELVIEW);
glLoadIdentity();

GLfloat position[] = { 0.0, 0.0, 0.0, 1.0 };
glLightfv(GL LIGHT2, GL POSITION, position);

The light may also be static relative to the viewer, but at a location other
than the eye.

B.9 Encapsulating OpenGL Calls

Even though interspersing OpenGL API calls inside a system as done in the
examples above may be adequate if the system is small, such interspersing of
functionality can lead to

Difficult migration—The decision to adopt a graphics API other than OpenGL
would be costly.

Code duplication—The same or similar graphical requests may be made by
several parts of a system. If the requests are scattered, it will be difficult
to observe that they can be grouped to shrink the code base and resulting
executable, and to simplify maintenance.

Test difficulty—Testing of a graphics feature is significantly harder if the
graphics code is scattered since no well-defined set of entry and exit
points exists for writing test code.

For these reasons it is wise to design an intermediate layer of software
that isolates OpenGL from the rest of a system. In the simplest setting, a
class GLdraw E2 would consist of a set of static functions that interface with
OpenGL.
template<typename NT>

struct GLdraw E2 {
static void drawPoint(

const Point E2<NT>& p,
const GlowColor& pointColor = GlowColor::yellow,
float pointSize = 7.0)

{
glPointSize(pointSize);
pointColor.Apply();
glBegin(GL POINTS); {

glVertex2f(p.x(), p.y());
} glEnd();
}

...
};

This elementary design can be augmented in two ways. If a set of points
will be repeatedly drawn, we would add functionality for setting and calling
drawing lists. If the interface is also expected to maintain a state, the member
functions could be made nonstatic.




	

��

C The GLOW Toolkit

OpenGL does not, by design, define an event model or a widget set. Yet these
are essential features in most interactive applications. This appendix intro-
duces GLOW, a portable, free, concise, and well-designed user interface li-
brary.

C.1 Introduction—Why GLOW?

The user interface library most often used in OpenGL programs appears to be
the glut library, which defines a simple event model and menu widgets. Due to
its simplicity and because its interface has been implemented on multiple oper-
ating systems, glut is the semi-official windowing toolkit linking the operating
system to the OpenGL rendering context. The portability and simplicity of
glut and its lack of widgets can be tolerated in many applications. In larger ap-
plications the model-view-controller design pattern becomes essential. MVC
separates the object or objects that describe the application itself (the model)
from those performing the visualization (the view) and also from those han-
dling user events (the controller). Such a strict separation leads to far more
enjoyable programming when the size of the application ceases to be trivial.

GLOW is not the only user interface library available for C++ and OpenGL.
Because the C++ standard, unlike Java, lacks a definition for an event model
or a widget set, several libraries have been independently developed to fill the
gap. At the time of this writing, the list includes fltk, glGUI, plib, wxWidgets,
GLUI, AGAR, gtk, SDL, ClanLib, Qt, and GLOW.

This appendix discusses the main ideas behind designing an application
using GLOW. Despite its simplicity, there are several reasons why GLOW may
be preferred over more vast, yet still well-crafted, C++ graphical user interface
libraries such as Qt:

• GLOW is open-sourced. One may fix problems arising during installa-
tion or development on one’s own.

• GLOW is licensed under the Lesser Gnu Public License (LGPL); it is
possible to use it for closed-source commercial applications. LGPL stip-
ulates making public only the modifications one implements in GLOW
itself.

• Even though its set of widgets is fairly complete, GLOW takes little time
to install and takes a small footprint on disk and in resulting executables.
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• GLOW’s simplicity derives in part because it is built only on glut. GLOW
thus benefits from the latter’s implementation on many operating sys-
tems.

Shortcomings in one library and advantages in another aside, it is in any
case preferable to adopt one C++ GUI library and use it as a, possibly short-
term, standard.

C.2 Window Creation and Drawing

Our first example consists of concise code—a brief main function and one
class—for creating a window and drawing a segment. We initialize GLOW
in main by calling Glow::Init(argc, argv), create an instance of a descendant of
GlowWindow (HelloSegmentWindow), and then ask GLOW to handle events
by invoking the infinite loop Glow::MainLoop(), which GLOW manages. The
program only returns from MainLoop when it is terminated.
int main(int argc, char ∗∗argv)
{

glow::Glow::Init(argc, argv);
new HelloSegmentWindow();
glow::Glow::MainLoop();

}
In this first example each member of the GLOW library is preceded by the

namespace qualifier glow::. In subsequent examples the statement

using namespace glow;

is used. Doing so is not a severe pollution of the global namespace since
classes in the glow namespace are in any case identified by a prefix with the
same name.

Notice that we do not bother to store the pointer to the instance of

HelloSegmentWindow

created; we have no need for it. Notice also that it is easy to create two win-
dows; it suffices to duplicate the line

new HelloSegmentWindow();

A HelloSegmentWindow object captures, evidently, a window. This is done
by deriving from the class GlowWindow. The constructor of the latter takes a
few parameters: the title of the window, coordinates to tell the windowing
system where the window should be drawn, the desired size of the window, the
type of buffer needed, and whether GLOW should “listen” to any events. In
this case we request no event handling but ask for a Glow::rgbBuffer—a color
buffer. The constructor then initializes the projection and modelview matrices.

The function GlowComponent::OnEndPaint(), where GlowComponent is an
ancestor of HelloSegmentWindow, is empty. This function is called for each
GlowComponent whenever a Refresh() request is received. Segment drawing
is performed by HelloSegmentWindow simply by overriding the behavior of
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OnEndPaint(). Even though we have asked for no event handling, a Refresh()
event is issued whenever a portion of the window ceases to be hidden by an-
other window.

GlowComponent

GlowSubwindow

GlowWindow

HelloSegmentWindow

const int initViewportWidth = 640;
const int initViewportHeight = 480;

class HelloSegmentWindow : public glow::GlowWindow
{
public:

HelloSegmentWindow()
: glow::GlowWindow(

”HelloSegmentWindow”,
glow::GlowWindow::autoPosition,
glow::GlowWindow::autoPosition,
initViewportWidth, initViewportHeight,
glow::Glow::rgbBuffer,
glow::Glow::noEvents)

{
glMatrixMode(GL PROJECTION);
glPushMatrix();
glLoadIdentity();
gluOrtho2D(0, initViewportWidth, 0, initViewportHeight);

glMatrixMode(GL MODELVIEW);
glPushMatrix();
glLoadIdentity();

}

protected:
virtual void OnEndPaint()
{

glClear(GL COLOR BUFFER BIT);
glBegin(GL LINES); {

glVertex2f(160.0f, 120.0f);
glVertex2f(480.0f, 360.0f);

} glEnd();
}

};

C.3 Keyboard Events

A few minor modifications to the simple example above will serve as an incre-
mental introduction to GLOW. We express interest in handling events sent from
the keyboard by listing the constant Glow::keyboardEvents in the parameter ini-
tialization list of the parent class GlowWindow. The function OnKeyboard will
now be invoked whenever a keyboard event is issued (signaling a keyboard key
is pressed). In the switch statement the program simply exits when either “q”
or the escape key is pressed. An empty default case is used to avoid compiler
warnings about underhandling an enumeration.
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class HelloSegmentWindow : public GlowWindow
{
public:

HelloSegmentWindow()
: GlowWindow(

”HelloSegmentWindow”,
GlowWindow::autoPosition, GlowWindow::autoPosition,
initViewportWidth, initViewportHeight,
Glow::rgbBuffer,
Glow::keyboardEvents)

{ ... }

virtual void OnKeyboard(
Glow::KeyCode key, int x, int y,
Glow::Modifiers modifiers)

{
switch (key) {
case ’q’: case ’Q’: case Glow::escapeKey:

Close();
default:

;
}

}
};

It would be possible to just write exit(0) instead of Close(), but then the
program would exit even if some windows remain open, which may be the
desired behavior. The behavior used here is to close any window that receives
the “q” key-press event, and then quit the program when the last such window
is closed. This behavior is achieved by setting “auto-quitting” to true. We
confirm that the exit-on-last-close behavior using the following code:

int main(int argc, char ∗∗argv)
{

Glow::Init(argc, argv);
Glow::SetAutoQuitting(true);
new HelloSegmentWindow();
new HelloSegmentWindow();
Glow::MainLoop();

}

C.4 Idle Events

Idle events are events that run in the background without being triggered by
the user—the motion of a cloud or of a flock of birds may be candidates. In
this example we use an idle event to rotate the line segment. The line could be
incrementally rotated by a fixed angle at each frame, or whenever a new image
is drawn, but that would lead to the rather undesirable effect that the rotation
speed would depend on the speed of the machine.
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An identical performance can be obtained by rotating the line at a rate
relative to a wall clock, modeled by the class Clock. Because Clock uses the
POSIX function gettimeofday, it would need to be modified if the system is
intended to compile under multiple operating systems.
#include <sys/time.h>

class Clock
{
protected:

timeval startTime;

public:
Clock()
{

// gettimeofday assumes we’re on POSIX.
gettimeofday(&startTime, NULL);

}

float
getSecondsSinceStart()
{

timeval currentTime;
gettimeofday(&currentTime, NULL);
float elapsedTime =

currentTime.tv sec − startTime.tv sec +
((currentTime.tv usec − startTime.tv usec) / 1.0E6);

return elapsedTime;
}

};

Three modifications need to be made to HelloSegmentWindow to activate
an idle rotation of the segment. HelloSegmentWindow is derived from

GlowIdleReceiver

(in addition to GlowWindow); the object is set to receive idle events by invok-
ing Glow::RegisterIdle(this); and the function OnMessage triggers a redraw if
some time (0.01 seconds) has passed since the last redraw (with a parameter
of type GlowIdleMessage). Sending a Refresh request inside an idle loop risks
consuming all the cycles available from the CPU and/or from the GPU. The in-
stance variable lastSeconds stores the time when the last Refresh request was
issued and the two consecutive times are compared before another request is
sent.

A new rotation matrix could be appended to the current modelview matrix
by issuing a glRotatef with a minuscule angle, but doing so would slowly
get the matrix out of orthogonality. The identity matrix is loaded and a fresh
rotation matrix is generated instead.

This is a suitable point to add an important improvement. Using a single
color buffer means that the top part of the line may appear brighter than the
bottom (if rasterization is performed from top to bottom). To set OpenGL
for double buffering, it suffices to write Glow::rgbBuffer | Glow::doubleBuffer
while constructing GlowWindow. There is no need to explicitly swap the front
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and back buffers; GLOW performs buffer swapping following the conclusion
of OnEndPaint.

class HelloSegmentWindow : public GlowWindow, public GlowIdleReceiver
{

Clock myClock;
float lastSeconds;

public:
HelloSegmentWindow()

...
Glow::rgbBuffer | Glow::doubleBuffer,
... ,
lastSeconds(0)

{
...

Glow::RegisterIdle(this);
}

protected:
virtual void OnEndPaint()
{

glClear(GL COLOR BUFFER BIT);
glLoadIdentity();
glRotatef(myClock.getSecondsSinceStart() ∗ 100.0, 0,0,1);
glBegin(GL LINES); {

glVertex2f(−160.0f, −120.0f);
glVertex2f( 160.0f, 120.0f);

} glEnd();
}
...
virtual void OnMessage(const GlowIdleMessage& message)
{

float seconds = myClock.getSecondsSinceStart();
if(seconds − lastSeconds > 0.01) {

Refresh();
lastSeconds = seconds;

}
}

};

C.5 Modifying the Projection upon Window Resizing

GLOW’s default behavior of reacting to a user’s request for modifying the size
of the window, or reshaping it, is to simply forward the request to OpenGL via
glViewport(0, 0, width, height). Modifying only viewport mapping changes
the scale and the aspect ratio. If the desired effect is to modify neither, the
function OnReshape needs to be overriden to update the projection matrices
accordingly. Modifying (as well as initializing) the matrices is done using the
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function setupProjectionMatrices. For clarity the functions Width(), Height(),
and OnReshape() are qualified with their defining superclass, GlowSubWindow.

void setupProjectionMatrices()
{

glMatrixMode(GL PROJECTION);
glPushMatrix();
glLoadIdentity();

int W = GlowSubwindow::Width()/2;
int H = GlowSubwindow::Height()/2;
gluOrtho2D(−W, W, −H, H);

glMatrixMode(GL MODELVIEW);
glPushMatrix();
glLoadIdentity();

glEnable(GL LINE SMOOTH);
glEnable(GL BLEND);
glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA);

}

virtual void OnReshape(int width, int height)
{

GlowSubwindow::OnReshape(width, height);

setupProjectionMatrices();
}

C.6 Widgets—Checkboxes and Buttons

Those who believe that object orientation is mere flourish over fundamental
(algorithmic) computing may still dismiss GLOW as an object-oriented or-
nament over the glut library, but the ease of creating widgets under GLOW
should make the case more convincing. A widget is an object capturing a user
interface unit such as a checkbox, a radio button, or a push button. To add an
instance of the first and the last, we add derivations to HelloSegmentWindow
from GlowCheckBoxReceiver and from GlowPushButtonReceiver.

GlowWindow

HelloSegmentWindow

GlowCheckBoxReceiver

GlowPushButtonReceiver

GlowIdleReceiver
Figure C.1
Parent classes of
HelloSegmentWindow

We then store pointers to the two widgets as well as one to a control win-
dow holding them.
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GlowQuickPaletteWindow∗ controlWindow;
GlowCheckBoxWidget∗ circleCheckbox;
GlowPushButtonWidget∗ quitButton;

The control window is separate from the main drawing window. The win-
dow manager will likely decorate it as an individual window.

controlWindow = new GlowQuickPaletteWindow(
”Controls”,
GlowWindow::autoPosition,
GlowWindow::autoPosition,
GlowQuickPalette::vertical);

GlowQuickPanelWidget∗ panel = controlWindow−>AddPanel(
GlowQuickPanelWidget::etchedStyle, ”Panel”);

circleCheckbox = panel−>AddCheckBox(
”Circle”, GlowCheckBoxWidget::on, this);

quitButton = controlWindow−>AddPushButton(”Quit”, this );

controlWindow−>Pack();

The OnEndPaint function now tests whether the box is checked before it
draws a circle.

if(circleCheckbox−>GetState() == GlowCheckBoxWidget::on)
gluPartialDisk(qobj, 200.0, 201.0, 60, 1, 0.0, 360.0);

Finally, we listen to incoming events via the following two functions.

void OnMessage(const GlowCheckBoxMessage& message)
{

Refresh();
}

void OnMessage(const GlowPushButtonMessage& message)
{

if(message.widget == quitButton)
exit(0);

}

C.7 Arcball Manipulation

Just as multiplication by a unit-length complex number effects a rotation about
the origin in the plane, a suitably-defined multiplication by a quaternion effects
a rotation about an axis passing by the origin in space. The generalization from
complex numbers to quaternions was understood in the 19th century. A more
recent development [98] defines a user interface for manipulating 3D solids
using a pointing device. By mapping a point inside a circle on the screen with
a quaternion, it is possible to rotate a 3D scene with the important constraint
that the rotation is reversible: The rotation corresponding to moving the pointer
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from a point A to a point B is the reverse of the one defined by moving from
B to A.

Since the arcball interface is widely useful, it is a good candidate for en-
capsulation in a library and GLOW provides an implementation. As before,
the following code creates a window and initiates GLOW’s main loop:
int main(int argc, char ∗∗argv)
{

Glow::Init(argc, argv);
Glow::SetAutoQuitting(true);
/∗ ArcballWindow∗ myArcballWindow = ∗/ new ArcballWindow();
Glow::MainLoop();

}
The window ArcballWindow remains a child class of GlowWindow, but it

now holds a pointer to an instance of GlowViewManipulator, which in turn holds
a pointer to an instance of Scene. As illustrated in Figure C.2, Scene is derived
from GlowComponent.

Scene

GlowComponentGlowWindow

GlowViewManipulator

Class diagram Object diagram

myArcballWindow

myManipulator

mySceneArcballWindow Figure C.2
GlowViewManipulator class and
object diagrams

The links between the three objects (appearing in the object diagram) are
created in the constructor of ArcballWindow. The two links in the object di-
agrams are established during the creation of the manipulator and the scene.
GlowViewManipulator is passed this pointer to identify the arcball window and
the scene is passed a pointer to the manipulator. The events that ArcballWindow
expresses interest in are now mouse key presses and mouse drag (motion while
a button is pressed) in addition to keyboard events.
ArcballWindow::ArcballWindow()

: GlowWindow(
”Arcball Window”,
GlowWindow::autoPosition, GlowWindow::autoPosition,
initViewportWidth, initViewportHeight,
Glow::rgbBuffer | Glow::doubleBuffer | Glow::depthBuffer,
Glow::mouseEvents | Glow::dragEvents | Glow::keyboardEvents)

{
setupProjectionMatrices();
//−−−−Manipulator−−−−
GlowViewManipulatorParams manipparams =

GlowViewManipulatorParams::defaults;
manipparams.draw = true;
myManipulator = new GlowViewManipulator(this, manipparams);
myManipulator−>SetSpinnable(true);
/∗ Scene∗ myScene = ∗/ new Scene(myManipulator);

}
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A GlowWindow draws its children hierarchy by invoking OnBeginPaint()
followed by OnEndPaint(). OnEndPaint() in a manipulator only modifies the
modelview matrix, thus affecting what is drawn by an instance of Scene. Since
an ArcballWindow object is the one receiving mouse events, it needs to delegate
the events to the manipulator. The function for handling mouse drag events is
shown below:

virtual void ArcballWindow::OnMouseDrag(int x, int y)
{

if (myManipulator−>IsDragging())
{

float xn, yn;
GlowSubwindow::NormalizeCoordinates(x, y, xn, yn);
myManipulator−>InDrag(xn, yn);

}
}

C.8 Displaying the Frame Rate

We make an improvement to the arcball manipulation program. Displaying the
number of frames per second has little, if anything, to do with GLOW, but it is
frequently needed in interactive graphical systems.

The first idea for determining the rate of rendering frames is likely to find
the inverse of the time needed for each frame. That the clock is accurate to the
nearest microsecond would suggest this approach is suitable. It fails because
frame rendering times will likely fluctuate significantly, resulting in a fast-
changing display of numbers. A more suitable approach is encapsulated in
the class FPScounter. After creating an instance of FPScounter, the function
showFrameRate will display the last computed frame rate until one second has
elapsed, during which the number of frames would be counted.

class FPScounter
{
protected:

timeval start time;
std::string str;

public:
FPScounter() : str(””)
{

gettimeofday(&start time, NULL);
}

std::string
getFrameRate()
{

static int number of frames = 0;
static timeval current time;
float elapsedTime;

gettimeofday(&current time, NULL);

elapsedTime =
current time.tv sec −
start time.tv sec +
( (current time.tv usec −

start time.tv usec) / 1.0E6 );

number of frames++;

if(elapsedTime >= 1.0) {
start time = current time;

std::ostringstream os;
os << number of frames << ” fps”;
str = os.str();

number of frames = 0;
}
return str;

}
};

The usual benefits of object orientation should be evident from this quick
introduction to GLOW. Encapsulating various functionalities makes it easy to
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debug a system and promotes reuse through either inheritance or through sim-
ple file and class copying.

C.9 Displaying the Frame Rate in a Widget

An alternative method for showing the frame rate will illustrate the use of
GlowLabelWidget. After constructing a GlowLabelWidget object and invoking
AddLabel on either a GlowQuickPaletteWindow or a GlowQuickPanelWidget,
the text passed as parameter is displayed in a label. The label can subse-
quently be modified by invoking SetText on the GlowLabelWidget object. Only
as much space as was initially provided through AddLabel is available in the
GlowQuickPaletteWindow, and so the initial string should exceed in length any
that is expected to appear.

C.10 GLUT Primitives

Some of the functionality defined in GLUT has not been duplicated in GLOW
since it carries over with no difficulty. One such set of functions are those for
rendering solid or wireframe objects:

• glutSolidSphere, glutWireSphere

• glutSolidTorus, glutWireTorus

• glutSolidTetrahedron, glutWireTetrahedron

• glutSolidCube, glutWireCube

• glutSolidOctahedron, glutWireOctahedron

• glutSolidDodecahedron, glutWireDodecahedron

• glutSolidIcosahedron, glutWireIcosahedron

• glutSolidTeapot, glutWireTeapot
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[65] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, 1988.

[v, 246]
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